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The massive high-temperature phase of the chiral Potts quantum chain is 
studied using perturbative methods. For the 713-chain we present high-tem- 
perature expansions for the ground-state energy and the dispersion relations of 
the two single-particle states as well as two-particle states at general values of 
the parameters. We also present a perturbative argument showing that a large 
class of massive Z.-spin quantum chains have quasiparticle spectra with n - 1 
fundamental particles. It is known from earlier investigations that--at  special 
values of the parameters--some of the fundamental particles exist only for 
limited ranges of the momentum. In these regimes our argument is not rigorous, 
as one can conclude from a discussion of the radius of convergence of the per- 
turbation series. We also derive correlation functions from a perturbative 
evaluation of the ground-state for the 713-chain. In addition to an exponential 
decay we observe an oscillating contribution. The oscillation length seems to be 
related to the asymmetry of the dispersion relations. We show that this relation 
is exact at special values of the parameters for general Z. using a form factor 
expansion. 

KEY WORDS: Chiral Potts model; spin quantum chains; perturbation 
expansions, massive phases, quasiparticles, correlation functions. 

1. I N T R O D U C T I O N  

In  th i s  p a p e r  we d iscuss  t he  ch i r a l  P o t t s  m o d e l  in  i ts sp in  q u a n t u m  c h a i n  

f o r m u l a t i o n .  T h e  first ch i r a l  P o r t s  m o d e l  t h a t  was  i n t r o d u c e d  in 1981 b y  

O s t l u n d  in o r d e r  to  desc r ibe  i n c o m m e n s u r a t e  p h a s e s  of  p h y s i s o r b e d  

sy s t ems  ~)  was  a c lass ica l  2 D  sp in  mode l .  T h e  a s s o c i a t e d  q u a n t u m  c h a i n  
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Hamiltonians were obtained in 1981-1982 by Rittenberg et al. (2' 31 Because 
this chain was not self-dual the location of the critical manifold was dif- 
ficult. In 1983, Howes et  al. ~4~ introduced a self-dual 713-symmetric chiral 
quantum chain, which, however, does not correspond to a two-dimensional 
model with positive Boltzmann weights. Soon afterward, von Gehlen and 
Rittenberg ~s~ noticed that the remarkable property of the first gap of this 
model being linear in the inverse temperature also applies to the second 
gap and can be generalized to arbitrary 7/ .  Furthermore, they showed ~s~ 
that the Ising-like form of the eigenvalues is related to this 71,,-Hamiltonian 
satisfying the Dolan-Grady integrability condition~61--or equivalently tT) 
Onsager's algebra) sl It was then shown by Au-Yang, Baxter, McCoy, 
Perk, and others that this integrability property--nowadays called 
"superintegrability"--can be implemented in a 2D classical model with 
Boltzmann weights defined on higher genus Riemann surfaces that satisfy 
a generalized Yang-Baxter relation. Subsequently the chiral Potts model 
attracted much attention because of these mathematical aspects, i.e., on the 
one hand the generalized Yang-Baxter relations ~9-17) and on the other 
hand because of Onsager's algebra. 17' ~8-2~1 In this paper we present new 
results showing that the model is also "physically" very interesting, 
although it is not directly related to a realistic 2D physisorbed system. 

Our observations will apply to general 71,-spin quantum chains: The 
superintegrable Z,-chiral Ports quantum chains can be generalized (not 
necessarily demanding integrability) to include further known integrable 
models, in particular the conformally invariant models of Fateev and 
Zamolodchikov with g/'~r i-symmetry) 22-25~ Recently, Cardy introduced 
an integrable chiral perturbation of these models) 26~ The Z,,-spin quantum 
chains describe both this perturbation as well as the integrable thermal 
perturbations of the conformal field theories (see e.g., refs. 27-31 ). 

In previous papers we provided numerical evidence that the low-lying 
excitations in the zero-momentum sectors can be explained in terms of 
17-1 fundamental particles for n = 3 ,  4 at general values of the 
parameters ~3-''33~ and checked for 17=3 that this quasiparticle picture 
extends to general momenta) 341 For the superintegrable 713-chiral Potts 
model McCoy et al. have derived a quasiparticle picture of the complete 
spectrum using Bethe ansatz techniques, t3s~ Recently, they argued that this 
quasiparticle picture should in general be valid for the integrable Z3-chiral 
Potts quantum chain) 36~ In this paper we will show that both results can 
be combined into the general statement that the massive high-temperature 
phases of general chiral Potts quantum chains have quasiparticle spectra. 
In fact, this quasiparticle picture will in certain cases give small corrections 
to the additivity of energy in the momentum-zero sectors observed in 
ref. 32. 
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The massive low-temperature phases of the 7/,-spin quantum chains 
exhibit spectra that are dual to those in the high-temperature phases, the 
main difference being that the role of charge and boundary conditions is 
interchangedJ 37~ Therefore, our results about the massive high-temperature 
phase can be transferred to the massive low-temperature phase using 
duality. 

In this paper we also use perturbation series in order to continue the 
systematic study of correlation functions which started in refs. 33, 34, 
and 37. We pay special attention to the oscillatory behavior which is also 
present in the massive phases and show how it can be related to the parity 
violation of the excitation spectrum via a form factor decomposition. 

The outline of this paper is as follows. In Section 2 we recall some 
well-known facts about the chiral Potts quantum chain and introduce basic 
notions. Section 3 presents a short summary of perturbation theory, which 
is applied in Section 4 to the dispersion relations of the lowest excitations 
of the 7/3-chain. In Section 5 we derive the main statement of our paper: 
the quasiparticle structure of the massive high-temperature phase. Details 
of the proof are shifted to an appendix. This argument can also be used in 
order to obtain some control on the finite-size effects. In Section 6 we apply 
perturbation expansions and form factor decompositions to the correlation 
functions, our main interest being the oscillatory contribution. Then we 
specialize to vanishing chiral angles and discuss some of the results 
obtained previously in more detail. Section 8, where we discuss the radius 
of convergence of the perturbation series, completes our investigation. 

2. T H E  C H I R A L  P O T T S  Q U A N T U M  C H A I N  

This section summarizes well-known basic facts about 7/-spin quantum 
chains. We also introduce some notions that will be useful later on. For 
more details see, e.g., the review in ref. 38. 

A general 77,,-spin quantum chain with N sites is defined by the 
Hamiltonian 

N n - -  1 

,-,k . . . .  k - -  ~ ~k~ , , - - k  (2,1) 
j = l  k = l  

For reasons to be explained below we will in all subsequent sections set 
) .=0,  i.e., we will neglect the extra term in (2.1) introduced in ref. 21 and 
will consider 

N n - - I  

H ~ '  = --  E E gk~Y +~'~~ Qi+ . . . .  ,k (2,2) 
j = l k = l  
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instead, aj,/'1, and ~j freely generate a finite-dimensional associative 
algebra with involution by the following relations (1 ~<j, l ~< N): 

a j a  I = a l a j ,  a j r t  = F l a j c o , & ,  

n n ~,n ~, n r , r ,  = r ,  r j ,  % = C :  = - :  = ( - f + )  = 
(2.3) 

n o p e r a t o r s  

O . ; _ _  n -- I n - -  I ~ ,  + ~ , n  - -  1 --0"j / ' ;  = - -  , ~V'~ , ~ j  _ ~ j  

where co is the primitive nth root of unity, co = e z"~/''. In the following we 
will consider only periodic boundary conditions for H ~  ~, i.e., F,v+~= F~. 

The Hamiltonian (2.1) contains 3 n - 1  parameters: the temperature- 
like parameters 2 and 2 which we choose to be real, and the complex 
constants ~k, ~k and ~k. H~  ~ is hermitian iff ~k=0Z*_k, Ctk= * " and O ~ n _  k , 

~q, = ~*- k .  

The algebra (2.3) is conveniently represented in 

-.~N :-----Cn | C~" | ~ ~ .... ~ -C".. (2.4) 
N t i m e s  

labeling the standard basis of C" by { e 0 ..... e,,_ l}- Then a basis for (2.4) 
is given by 

lil...iN) :=ei , |174 0~<6~<n--1 (2.5) 

Now the following operation in the space (2.4) is a faithful irreducible 
representation r of the algebra (2.3): 

r(aj) lil...6...iu> =a;q lil...ij...iN) 

r(I'j) ]i,...ij...iN) = li,-.-(/j + 1 mod n)...iN) (2.6) 

=~--Ii, . . .(ij+l).. .iN), if ij<n--1 
r(~j) li,...iy...iN) (li,...1...iN), if i j=n--I  

The involution is the adjoint operation with respect to the standard scalar 
product in the tensor product of C". 

The Hamiltonian (2.1) commutes with the 7/  charge operator 
:= 1-[~= l aj acting on the vectors (2.5) as 

r(O) lil...iN) =co Iz~=' ij) [il...iN ) (2.7) 

which shows that the eigenvalues of ~ have the form co e with Q integer. 
Thus, H ~  I has n charge sectors which we shall refer to by Q = 0 ..... n - 1. 
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H ~  ) also commutes  with the translation opera tor  TN that  acts on the 
basis vectors (2.5) in the following way: 

r(TN) lil i2...iN) = li,_...iNil ) (2.8) 

The eigenvalues of TN are N th  roots of unity. We label them by e ~e and 
call P the "momentum".  We choose 0 ~< P <  2n corresponding to the 
first Brillouin zone and have P ~  {0, 2 n / N , . . . 2 n ( N - 1 ) / N } .  Note that  the 
states 

IIil i2... iN_ I iN)) e 

1 
:= /7-~(l i l i2 . . . iN-- l iN)  + e  ie l iNi l i z . . . iN- l )  + ... 

~r 

+ ell'IN- I I li2.., iN_ 1 iNil ) ) (2.9) 

are eigenstates of  TN with eigenvalue e ~p. Here X is a suitable normalization 
constant. I f  the state [i~ . . . iN) has no symmetry  (i.e., T% li~...iN) ~ li~ . . . iN) 
for all 0 < k < N), one has JV" = N. This will apply to most  cases below 
where we need (2.9). 

In this paper  we will use the following parametr izat ion of the con- 
stants 0ok and 0Z k, fixing their dependence on k: 

e i e b i 2 k / n  - I ) e i C p ( 2 k / n  - -  I ) 

~k sin(rrk/n)' ~k sin (nk/n) (2.10) 

This is a suitable choice because it includes a large class of interesting 
models. 

For  ~ =~0 = 0  one obtains real 0~k=~k= 1/sin (nk/n). This leads to 
models with a second-order phase transition at 2 =  1 which can be 
described by a parafermionic conformal field theory in the limit N - 4  ~ at 
criticality j2_,. 23) These so-called Fa teev-Zamolodch ikov  models t24~ lead to 
extended conformal algebras ~/r ~ where the simple fields have confor- 
mal dimension 2 . . . . .  n for generic values of  the central charge c. I-'5) The 
spectrum of the Hamil tonian (2.2) can be described by the first unitary 
minimal mode l .o f  the algebra ~r ~. For  n = 3 the symmetry algebra is 
Zamolodchikov ' s  well-known spin-three extended conformal algebra 1391 at 
c=4/5 .  

Choosing ~b = ~0 = n/2 in (2.10) for the Hamil tonian  (2.2) yields the 
superintegrable chiral Potts  model. For  n = 3 such complex parameters  in 
a spin chain Hamil tonian  were first investigated in detail by Howes et al. ~4~ 
The integrability of this chain was then recognized by von Gehlen and 
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Rittenberg who also generalized it to higher Z,. More precisely, they 
showed (5~ that the 7/,-Hamiltonian (2.2) with (2.10) at ~b=~0=rc/2 is 
integrable for all values of the inverse temperature 2, using the Dolan- 
Grady integrability condition, t6) This particular kind of integrability is 
called "superintegrability" (note that this terminology is not used entirely 
consistently in the literature--in contrast to us, some authors include the 
generalized Yang-Baxter relations in the notion of superintegrability). Ahn 
et al. ~211 showed that the Hamiltonian (2.1) is still integrable at ~b = q~ = n/2 
for o2 k = ~k = 0Zk = 1 - / c o t  (nk/n) and any 2, 2. Their argument used Onsager's 
algebra in order to construct an infinite set of commuting conserved 
charges. Note that the Hamiltonian (2.1) subject to the above constraints 
is not superintegrable for general values of the parameters. Anyway, one can 
introduce a further parameter ). into (2.2) without spoiling integrability. 2 

The parametrization (2.10) also includes the family of integrable 
models discovered in refs. 9-14 which interpolates between the integrable 
cases at ~b=~p=0, ; t= l  and ~=~0=n/2 .  The Hamiltonian (2.2) is 
integrable if one imposes the additional constraint 

cos ~o = 2 cos ~b (2.11) 

on the parametrization (2.10). For ~b=cp=0 this yields 2 =  1--the con- 
formably invariant critical points. At ~b =~0 = 0, the Hamiltonian is self- 
dual, i.e., it is invariant under a duality transformation such that 
H~I(2)~; tH~)(2-~) .  The Hamiltonian is also self-dual on the superin- 
tegrable line ~b =q~ =n/2.  The Hamiltonian H~ ) with the choices (2.10), 
(2.11 ) is in general not longer self-dual, whereas particular choices yield a 
self-dual Hamiltonian. If we choose for (2.10) ~b = q~ and neglect (2.11 ), H~  ~ 
will be self-dual again. Therefore we choose to refer to (2.2) with (2.10) as 
the general "chiral Potts model". We will not consider the integrable case 
where the additional constraint (2.11 ) is satisfied in detail. 

We will now explain why we are going to focus on the Hamiltonian 
(2.2) rather than considering the more general case (2.1). For ). = 0, (2.1) 
is just a different representation of (2.2). Thus, although we will certainly 
obtain different numerical results, the main structures are unchanged by 
the extra term in (2.1). In this paper we will use, for example, perturbation 
theory. The free part of the Hamiltonian H 0 is the same in (2.2) and 
in (2.1): H 0 =  . = - Z j  k~ k- Only the potential V is changed. For (2.2) we 
have k n k V=--2.j ,  kctkljFj~_(,  whereas for (2.1) we have an extra term 

2 For  n = 2 and 2 = ~. this gives rise to extra symmetr ies  of the H a m i l t o n i a n - - o n e  obta ins  an 
XY quan tum chain t21) that  is invar iant  under  an addi t iona l  global  U(1) symmetry  group. 
However,  one can easily check tha t  for n >  2 the Hami l ton ian  (2.1) is not  invar iant  under  
any nontr ivial  change of bases Fj --, aFj + b~.j, .Ej --, cFj + d~j. 
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7" x-- 0c F~ F " -  k • h02 -~ ~" -  k with h : = 2 -  ').. Obviously, the action : - - / - . , j , k  k j j + l  T k . ~ j ~ j + l  
of V and 17" on the eigenstates (2.9) of charge and momentum is the same 
apart from different numerical constants. Furthermore, the extra term in 
(2.1) spoils duality. Thus, we will no longer consider the Hamiltonian (2.1) 
explicitly. It is always understood that our results apply to it with only 
minor modifications. In particular, the quasiparticle picture we will derive 
for the Hamiltonian (2.2) will hold for (2.1) as well. 

Our main interest is the spectrum in the limit N---, oo of H ~  ~. Of 
course, we have to specify how the limit is to be taken. In order to be able 
to study the spectrum in this limit we concentrate on the N dependence of 
the Hilbert spaces J g N = ~ ( H ~ ) .  Consider the following embedding of 
Hilbert spaces: 

.~u ~ .3f M, N < M 
(2.12) 

Ili l . . . iN))e~l[il . . . iN 0...0 ))e 
M --  N t i m e s  

This definition is motivated by the well-known fact that matrix elements of 
(2.2) in momentum space are almost independent of N. We will see in the 
following sections that this definition is indeed useful. 

Using the inclusion map (2.12) we can define the Hilbert space ~f' as 
the closure of an inductive limit 

:= {ix513N: Ix) egN} - (2.13) 

Furthermore, we shall not consider the limit of H ~  ) directly. Instead, we 
shall subtract the ground-state energy E ~ first and then consider the weak 
limit of the operator 

AH~' := H ~ ' -  E~  (2.14) 

Similarly, we define T to be the weak limit of TN. For each finite N, 
Eqs. (2.7) and (2.9) imply that the Hilbert space r is graded into charge 
and momentum eigenspaces: 

n - -  1 

Ye%= ~ ~ j : ~ / o  (2.15) 
P Q=O 

In the limit N--, ~ the grading (2.15) translates into the fact that AH ('') 
and T can be written in terms of the same projection-valued measure 

n - -  I n -  1 

T =  ~ I eieW' dH'Q'' AH'"'= ~. ~ AE(,t)dH, Q (2.16) 
Q=O O=o 
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with 0 ~< P(/~) < 2zt. The {~r~} can be thought of as infinite-dimensional 
generalizations of projection operators onto eigenspaces of charge Q 
and momentum P(/l). Thus, (2.16) is just the proper formulation of 
(2.15) in the infinite dimensional case. The existence of the limits and 
projection-valued measures in (2.16) is not at all obvious. However, this is 
guaranteed by the quasiparticle pictures, a proof of which is presented in 
Appendix A. 

The definition in (2.14) is motivated by the fact that the smallest eigen- 
value of (2.2) has a leading term proportional to N and the excitation 
spectrum usually is defined with respect to this reference eigenvalue. With 
the definition (2.14) the Hamiltonian A H ~  I is bounded from below. This 
automatically yields an operator AH~"I=I imN_o~AH~ ~ with positive 
spectrum and an eigenvector for eigenvalue 0. Note that this definition of 
the limit implies that any point where at finite N eigenvalues exist that are 
arbitrarily close to it belongs to the spectrum. In particular, the spectrum 
forms a closed set. 

Before proceeding, let us make a few further comments on our defini- 
tion of the limit. First note that H~  ~ is defined only on _~(H~ ~) = .~N cdr 
Of course, we could extend it linearly (e.g., by 0) to the complete Hilbert 
space de'. However, it is easy to show that the limit A H  ~"~ does not depend 
on the particular extension chosen as long as it is uniformly bounded for 
all N. We will therefore not make use of any particular extension. 

Second, it is convenient to let H~  ~ act on vectors in ~H~; I = ovfN which 
corresponds to choosing a particular representative for a vector in the 
Hilbert space ~ .  This is useful because H~  ~ naturally acts on chains of 
length N. However, such a vector always has to be thought of as lying in 

and, in particular, in all ~'r with M/> N. Although the notation might 
propose this, a limit in the chain length never has to be applied to momentum 
eigenstates. Of course, other states than (2.9) are not naturally embedded 
into ~ and therefore have to be expanded in terms of them. This might 
lead to N-dependent coefficients and a limit might have to be applied to the 
coefficients. 

Finally, it is noteworthy that the Hilbert space a~ can be thought of 
as a kind of universal tensor product. Any tensor product of spaces a~ N and 
JgM can be naturally identified with ~Jv+M: a~u | ~ t  ~ a~u+M. Therefore 
the definition (2.13) yields an object that is closed with respect to taking 
tensor products. Note that we have chosen a particular topology on ~r 
which is not the one usually chosen on the tensor algebra of a vector space. 
Still, this observation is useful to guarantee the completeness of the 
construction to be presented in Section 5. 
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3. GENERALITIES ABOUT PERTURBATION THEORY 

In this section we review the general outline for perturbation theory to 
all orders as presented in ref. 40, which directly applies to the degenerate 
case as well. 

The Hamiltonian (2.2) can be written as 

H=Ho+2V (3.1) 

w i t h H  0 = - y ~ j , k -  k  koj, v =  - 2 j .  k r ; ' .  . The eigenstates for Ho are 
obvious; thus we have solved 

Ho [a) =EI~ la) (3.2) 

Now one can solve 

H la(2)> =EI. > [a(2)> (3.3) 

for small 2 as follows: Let ql-> be the projector onto the eigenspace of Ho 
with eigenvalue E(l~ We can treat nondegenerate and degenerate pertur- 
bation theory alike if we choose la> such that 

qla> Via> -F(') [a) (3.4) 
- -  ~ l a >  

with a constant E(I~' ~, i.e. ql.> Vql.> is to be chosen diagonal. One also 
needs a regularized resolvent g(=) of Ho: 

g(z) :=(~ - q l . > ) ( = -  H0) - '  (3.5) 

Then, the Wigner-Brillouin perturbation series 

~ " P "  [a(2)) = ~ 2" ]a ,v )  (3.6) El-> = "~ ~1,,>, 
v = 0  v = 0  

is given by the following recurrence relations: (4~ 

la, 0> = la> 

{ , ,  } la, v)=g(El~ Via, v - l > -  2 la, v - p )  F~,')_l,,> (3.7) 
I t =  1 

E(,,+t) <al Via, v> la> = 

Note that neither la(2)> nor la, v> is in general normalized, although la> 
must be normalized to one. Observe that the derivation of (3.7) does not 
rely on H being Hermitian. Therefore, (3.7) may also be applied to 
diagonalizable but non-Hermitian H. 
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The radius of  convergence of the series (3.6) can be more  easily dis- 
cussed in a different framework.  Therefore, we postpone such a discussion 
to Section 8. 

There is one observat ion that  makes  explicit evaluation of high orders 
for the Z, , -Hamil tonian (2.2) possible. The energy eigenvalues El,,> of H ~  ~ 
do depend on the chain length N. However,  for the low-lying gaps 3 ,4Ela > 
of z lH~ ) [see (2.14)] the coefficients for powers of  2 become independent 
of  N up to order 2 N-2 (see, e.g., ref. 41). Intuitively, this can be inferred 
from the fact that  (2.2) shows only nearest neighbor interaction and thus 
we need N -  1 powers in V to bring us around a chain of  length N. Smaller 
powers in V (or 2) do not feel that  the length of the chain is finite. 

4. H I G H - T E M P E R A T U R E  E X P A N S I O N S  

In this section we study the low-lying levels in the spectrum of the 
Z3-chiral Pot ts  model perturbatively. In particular,  we calculate the disper- 
sion relations of  the lowest excitations in the charge sectors Q = 1 and 
Q = 2. Some first results in this direction have been presented in ref. 32 for 
the self-dual version of this model. In this section we derive higher orders 
and admit  general ~b :# q~.4 We also present some explicit results on the next 
excitations. 

Per turbat ion expansions had already been used in ref. 4 and were 
again used, e.g., in ref. 42 and 41 in order to obtain some results for spectra 
and order parameters  on the superintegrable line. Recently, low-tem- 
perature expansions have been applied in ref. 37 to spectra and correlation 
functions for general values of  the parameters .  Here, we focus on the high- 
temperature  regime. 

For  arbi trary n, N the ground state of  the Hamil tonian  (2.2) in the 
limit 2 ~ 0 is given by 

IGS) :---10...0) (4.1) 

provided that  -n/2 ~< ~0 ~< rt/2. For  n = 3, (4.1) will be the ground state for 
the larger range - n ~ < q ~ < r t  and for n = 4 ,  (4.1) is the ground state for 
- 5rc/6 ~< ~o ~< 5z~/6. 

The first excited states at 2 = 0 for Q > 0 and arbi trary P are the states 

IIsQ>>p := IIQ0...0>>p (4.2) 

3 This will apply precisely to the fundamental quasiparticle states to be discussed below. 
4 Note that the main limitation of the length of most of the series to be presented in this 

section is that we explicitly keep the dependence on the parameters. 
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in the range - n / 2  ~< ~0 ~< n/2. According to our definition of the space )ff 
in Section 2, the states (4.2) give rise to proper eigenstates in the limit of 
z/H tn~. Thus, the corresponding gaps AEQ, o(P) belong to the point spec- 
trum of zlH ~ 

More generally, we wish to argue later that the complete spectrum can 
be explained in terms of quasiparticles. At 2 = 0, a single-particle excitation 
corresponds to just one flipped spin (4.2). Due to the absence of interac- 
tions, k -  particle states have k flipped spins at 2 = 0. For 2 > 0 one would 
have to take the interactions into account using perturbation theory. 
Although we are in general not able to perform such a computation 
directly, it may still be suggestive to think in terms of such states. In fact, 
such a picture is quite traditional (see, e.g., ref. 43). 

In the following we will use the abbreviations 

: =  1 - - 4 c {  2 , : =  c o s  

(4.3) 

For n = 3 we can calculate the ground state energy per site eo which is 
defined by o E N = Neo perturbatively: 

4 222 ~ 2 3  x//3 ( 1 4 ) 4 
eo = - - ~  3 x / ~  9 x/~ cg2 + 8---~ ~2~- + ~, ~ 2 

+ ~ ( 4~g- + r 6) (4.4) 

Equation (4.4) is independent of the chain length N if N >  5. In order to 
convey some idea of the quality of such an expansion we mention that for 
~= ~o =n/2 and 2 =  1/2 the difference between (4.4) and the result of a 
numerical diagonalization of the Hamiltonian (2.2) performed with 12 sites 
is of magnitude 10 -4. Further comments on the accuracy of (4.4), in 
particular at the boundary of the phase, can be found in ref. 37, where 
the same expansion has been calculated for the massive low-temperature 
phase. 

Furthermore, for n = 3 we obtain for the lowest Q = 1 gap and P = 0 
using the states (4.2) 
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AE,. o(~b, cP) = 4 sin (-~--~) -2~4x/~r - 2 - ' ~ 2  { ~ + r  l ' 1 3 , v / ,  ~ - " ~ J  

1 f 4r + r 3r + c-~" l 

~ r ~ - - 1  ~ + 4 r  
- l t , / 7  + 2, /3 + 2, /3 r 

4r - 12r + 9 1 + 
2 X//3 c~ '3 3 sin ((~-- r cs -" 

~ + 1  ~ , - 2  } 
3 sin ((-~+~)/3) @' + 3 sin ((~+ cp)/3) cg'- + C(,I?) 

(4.5) 

AE2. o(qb,~o) is given by zlE,.o(cb, cp)=zlEl.o(--~b,--q~). For n = 3  and 
general P we obtain from the states (4.2) the following perturbation expan- 
sion for the dispersion relation of the lowest Q = 1 excitation: 

El(P) := JEl.o(P, ~, cp) 

= 4 sin ( ~ - - ~ )  - 2 & cos ( P -  })  
,/3 

_223x/32 {cos(P+2~/3)+I~ +c~ + 2 3 ~  9`/'31 

2cos(2P+~b/3)-3cos(P-e~/3)+2cos(3P-q~)-2r 
x - cg~- 

2 cos(2P + q$/3) +2 cos(P-  ~b/3) 

cos(2P + q$/3 ) + 2 cos (P - ~b/3 ) + ~a } + (D(2 4) (4.6) 
+ ~,_ 

and the lowest Q = 2 excitation is given by 

Ez(P) :=AEz, o(P, d?, cp)= zlE~,o(P, -~b, -cp) (4.7) 

Equations (4.6) and (4.7) have already been presented in ref. 34 in a dif- 
ferent form. Note that the agreement of (4.6) and (4.7) with the results of 
a numerical diagonalization is usually good, as was discussed in detail in 
ref. 34. 
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In the previous section die mentioned that the kth orders of (4.5)-(4.7) 
are independent of N if N/> k + 2. In particular, this implies the existence 
of the limits N--* Go of (4.5) and (4.6) if the perturbative series converge at 
all. 

In the derivation of (4.6) we have not assumed that the Hamiltonian 
(2.2) is Hermitian. Thus, we may admit ~ e C. We have checked in a few 
cases that results of a numerical diagonalization at N = 12 sites are still in 
good agreement with (4.6) also for complex ~b. 

We would like to mention that it is no problem to compute further 
orders of the series (4.4)-(4.6). In fact, we have indeed done so [see 
Eq. (4.2.6) of ref. 44 for the seventh-order result of (4.4) and Eq. (4.2.7) 
of ref. 44 for the fourth-order contribution to (4.6)], but refrain from 
presenting the results because the next orders are very complicated and not 
relevant for our purposes. 

Obviously, for q~ = ~0 = ~/2 we have to perform degenerate perturba- 
tion theory. The correct perturbative excited state for Q = 2 and P = 0 is for 
odd N 

(2__LZ .2 
N+IJ  

(1120...0))0+ IIl10...0)~o+ ...Ill 0...0 10...0))o) (4.8a) 
IN-- 31/2 

and for even N 

2 ,  
N +  l J  ( I I20. . .0) )o+ It110...0))o 

1 ) 
+ - - I I 1  0...0 10...0))o 

,/5 
N / 2 -  I 

+. . . I l l  0.. .0 10...0>>o 
N / 2  - -  2 

(4.8b) 

With this state we obtain for N >  9 

AE_,o ~, =4(1--2)+~()~ 9) (4.9) 

as expected. Ira fact, (4.9) has been proven exactly ~tt~ using different 
methods, but previous perturbative calculations were restricted to the non- 
degenerate case 3Ej. o at ~b = ~p = n/2. This demonstrates the universality of 
the approach to perturbation expansions outlined in Section 3. 

Also for the higher excitations we must apply degenerate perturbation 
theory. The next simplest case are the states where two spins are different 
from zero. For general P, - n / 2  < ~o < n/2, the space of the excitation with 
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one spin flipped into charge sector Q~ and another  one flipped into charge 
sector Q2 is spanned by the states 

[It~"Q'-))e := IlOl 0 . . . 0  0 2 0 . . . 0 ) ) , 0  

j -  1 times 

N - l ,  if Q I r  
l~<j~< [N/2] ,  if Qt=Q2 

(4.10) 

Obviously, we will have to consider two cases: Ql ~ Q2 and Qt = Q2. 
Let us first consider Ql 4: Q2. For  n = 3 we can choose Ql = 1, Q2 = 2. 

Then we may omit the upper indices of t because they are uniquely fixed: 
Iltj>)e := Iltt'z))p. Now, the potential V acts in the space (4.10) as 

qr(V) IIt~>>p 2 ( . . = - ~  e '(*/~ m lltN_l>>p 

qr(V) [Itj>> p : - -  

qr(V) IItN_ t>>p= - - - -  

+2cos(P)  e -'~/3+e/2' lit2>> p)  

2 (2cos (P )e i ' " / 3  + ,0/2' 'l t , - > > e  

+ 2 c o s ( P )  e "*/~+,0/'-' Iltj+,>>p), 1 < j < N -  1 

ell'k~3 P~ I ci14~/3 + P/2) Iltu_ 2)) e + Iltl )) e 

(4.11) 

where q is the projector onto the space (4.10). Although it is not difficult to 
diagonalize (4.11) numerically for comparably long chains (e.g., N =  100), 
we did not succeed in obtaining a closed expression for the eigenvalues or 
eigenvectors. 

In the second case, i.e., Q := Q t = Q2, introduce the abbreviation W 
by 

2 cos sin(nO/n ) [ P - ( x - ~ ) ~ b ] W l [ t .  Q'Q)),0:=qr(V)IItQ'Q))p 

(4.12) 

In the case of two identical excitations we will also have to dis- 
tinguish between even and odd momenta  in terms of lattice sites. It is 
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therefore convenient to introduce a further abbreviation 6e u encoding this 
distinction: 

P N  P N  
oN :=0  if ~ odd; 6 u :=1 if ~ even (4.13) 

The action of the potential V now is 

w llt~ %) p 

= (e - ' / 2  IIt~" e>>. )  

W IIt~'Q>>p 

,,:>>.. 
(4.14) 

W IItQ:vQ] _.I >> ? 

=~(  eje/-' tQ'q~x- 5V2//"\ p § i fN odd 
[(e 'el2 IIt~'/~_2>>e+6~v/2e -'el2 IItNQ~>> e) i fNeven 

W IIt~iv~3>> p 

= f ( e  '~e/z IIt~,Q_3,/2>>p--(--l),~e N IIt~:,Q_ ~,/2>> p) i fN o d d  
N iP/2 Q, Q "[6e ,v/~e IItN/2_,)) p) i fN even 

At first sight (4.14) looks much more complicated than (4.11). This is 
misleading, however, and the matrix W can be diagonalized explicitly. In 
order to do so, we exploit a connection to graph theory (see, e.g., ref. 45). 
In this section, we restrict ourselves to a graphical representation of (4.11) 
and (4.14)--the calculation is spelled out in detail in Appendix A of ref. 44. 

Each vector lira" Q2>> ~, will be symbolized as a �9 with the index 
written above. The action of the potential V is symbolized by lines, with 
the square of the matrix elements (up to an isomorphism presented in 
Appendix A of ref. 44) attached to them. Assume first that we could dis- 
tinguish the two flips we make. Then the graphical representation for the 
action of the potential V (or IV) would be 

] 2 N - - 2  N - - I  
~" - - - - " ' " - - - -  ---- = ( ~ % r  (4.15) 

I 1 

Here (-~k) denotes the incidence matrix derived from the Cartan matrix of 
a Lie algebra ~~ k. However, the states ]ltf" Q))e and ]]t~'~.))e are propor- 
tional to each other and must therefore be identified. Furthermore, it turns 
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out that for N even and NP/2n  odd, I l t ~ ) ) v  = 0 vanishes identically. This 
already splits the graph (4.15) into two disjoint parts. Therefore, a graphi- 
cal representation of (4.14) is given by 

l 2 r r  2 N / 2 -  ~ N P  
W~_~$ I • " ' "  ~ 1 : = (JN/'_- I) for N even, ~ odd 

[ N - -  1 )/2 1 2 I N - -  3)/2 
= "'" �9 @ =(~'~c^,-l)/2) f o r N o d d  (4.16) 

1 2 N/2-- 2 N/2-- ~ ZV/2 N P  
W_~ ~ 1 ~ "'" �9 l 2 z = ( ~u/2) for N even, ~-n even 

Fortunately, all the graphs (4.16) have norm less than or equal to 2. 5 
Because the eigenvalues of  such graphs are classified/45~ we can derive the 
first order explicitly. 

In the case of  (4.11) the situation is different. In order to simplify the 
discussion consider the case P =  ~b =0 .  Then one can represent (4.11) as 

N - I  1 2 N - - 2  N - - I  
V ~  �9 . .  ~ . . . . . .  io. . . / / i  

I 4 4 1 
, k - -  - - - !  

Note that instead of drawing a.closed diagram we have represented part  of 
it twice. It is easy to see that  the norm of (4.17) is larger than 3 (it tends 
to 4 for N ~ ov ). The absence of explicit expressions for the eigenvalues of 
such graphs prevented us from deriving an explicit expression for the first 
order of two-particle states in the Q = 0 sector. 

The result of  the calculation in Appendix A of ref. 44 for the eigen- 
vectors of  the matrix W as given by (4.14) is 

i t  N/2~ - ~ ( (2k  " ]['C~k'Q))p'=~N~. j~ 1 s i n . - - ~ N ~ ) J T r ) e - i ' P / 2 " J - l ' [ [ t ~ ' Q ) ) v  

v /~  ,/2sin((2k-6Ws 
+ [ 3 + ( - I U ]  

xe-i(P/21([N/2] -1 ) tQ.Q } l[ t u/22)) p (4.18) 

The final result for the first-order expansion of the energy for these excita- 
tions is, for N~> 3, 

s (~ )  is the tadpole graph. 
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n - -  1 

- 42 cos [P/2 -- ( 1 - 2Q/n) ~b] cos [ (2k - ae u) n/N] 
sin (rtQ/n) 

+(9(22), 1 ~ < k ~ < [ N + ~  - 1 ]  (4.19) 

For remarks on the second order see Appendix A of ref. 44. 

5. EVIDENCE FOR QUASIPARTICLE SPECTRUM 

In this section we present an argument using perturbation theory that 
the spectrum of the Z,-Hamiltonian (2.2) can be interpreted in terms of 
quasiparticles for a wide range of parameters. In the case of Z3, the disper- 
sion relations of  the two fundamental particles with Q = 1 and Q = 2 are 
given by (4.6) and (4.7). 

The results in ref. 32-36 suggest that we may expect a quasiparticle 
spectrum. More precisely, all excitation energies AEQ,~(P, ~, ~p) should 
satisfy 

mr  

J E  o, ~(P, ~, ~P)= ~ E~k~(P eke) 
k= I  

m r  

P =  ~. P~*lmodDr (5.1) 
k = l  

mr  

Q = ~ Q~*' m o d  n 
k = l  

where El(P) ..... E,,_~(P) are the energies of the n - 1  fundamental 
quasiparticles. Additionally, the fundamental quasiparticles seem to satisfy 
a Pauli principle, i.e. Q~ = Q~:~ implies pI;) :~ p~J~. In particular, for n = 3, 
(4.6) and (4.7) are the dispersion relations of the fundamental Q =  1 and 
Q = 2 quasiparticles and all other states can be obtained by composition 
under the assumption that energy, momentum, and charge are additive. 

It should be clear to the reader that a particle interpretation is not 
directly incorporated into the Hamiltonian (2.2), nor is it related to any 
particular integrability properties of the Hamiltonian. Even on the superin- 
tegrable line the derivation of (5.1) given in ref. 35 for n = 3 only yields the 
quasiparticle spectrum at the very end. This is due to the fact that standard 
Bethe ansatz methods (which would automatically ensure a quasiparticle 

822/82/3-4-7 
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spectrum) have failed for the integrable chiral Potts model such that func- 
tional relations for the transfer matrix had to be used in order to determine 
the excitation spectrum (see ref. 35 and references therein). Instead of 
specializing to the integrable chiral Potts model and using particular 
integrability properties we will argue below that the quasiparticle inter- 
pretation (5.1) follows from the basic physical properties of finite correla- 
tion length and absence of long-range order, which are not related to 
integrability at all. Although this is not a surprising observation, a rigorous 
derivation of (5.1) using this argument is to the best of our knowledge not 
contained in the literature. This motivated us to spell this argument out in 
more detail below as well as in Appendix A. 

Before presenting a proof of (5.1) we would like to add a remark to 
Figs. 2-4 of ref. 34. In the limit N ~  ~ the eigenvalues seem to become 
dense such that we may expect to interpret the energy bands as a conti- 
nuous spectrum in the weak limit of the Hamiltonian. Note that according 
to our definition, the single-particle excitations (4.2) lead to point spec- 
trum. One also observes that the energy bands are filled from the interior 
such that their boundaries do not belong to the spectrum for any finite N. 
However, we pointed out in Section 2 that the spectrum is closed in the 
infinite-chain limit. Thus, the boundaries of the energy bands will belong to 
the spectrum in this infinite-N limit. It is worthwhile noting that the nor- 
malization factors 2/x/ON for the two-particle states in (4.18) demonstrate 
that these states tend to zero for N ~ oo and will therefore not give rise to 
proper eigenvectors. This confirms that with our definition of the limit 
composite particle states belong to the continuous spectrum. 

Before proceeding with the general discussion let us first look a little 
closer at the two-particle states. Comparing (4.19) with the first order 
expansion for the single-particle states (39) of ref. 32, one observes that this 
first order expansion of the two-particle excitations is in agreement with the 
quasiparticle rule (5.1). Up to first order the composite particle states 
satisfy either 

o r  

2AEQ, o(P, ~b, ~p) < AEzo. k(2P, ~b, q~) < 2AEo. ' o(P + 2n, ~b, q~) 

2AEQ, o(P, ok, ~P) > AEzo, k(2P, ~b, q~) > 2AEQ, o(P + 2n, ~b, q~) 

depending on which one of the single-particle energies is larger. Thus, the 
two-particle states indeed lie inside the energy band of two single-particle 
states and the boundaries are not included. Even more, we can see from 
(4.19) that the two-particle states become dense in this energy band for 
N---~ o0. 
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Let us now present a more abstract argument which ensures the 
validity of (5.1). The interaction in the Hamiltonian (2.1) is very short 
ranged--in fact, only among nearest neighbors. In the massive high- 
temperature phase there is no spontaneous order and the correlation length 
is finite. Thus, if one puts two excitations of"short"  chains with a sufficient 
separation on a longer chain, the interaction will be negligible. For example, 
putting one single-particle excitation on the left half of the chain and 
another on the right half will approximate a two-particle excitation. 

We make this derivation of the quasiparticle interpretation of the 
spectrum more precise using perturbative arguments. According to the 
remarks at the beginning of Section 4, the quasiparticle spectrum with fiat 
dispersion curves is easily verified for 2 = 0. In this section we sketch a 
proof that the quasiparticle picture remains valid for 2 > 0--we just present 
the main ideas. A modified rigorous version of the proof is spelled out in 
Appendix A. 

First, we notice that 

Af-l(") --Af-r QAH~)+(9(AHN, M) " "  N + M . . . .  N "~"Y" "31-1 

TN+M= {4 + e(TN. M)} TN| 7". 
(5.2) 

where (_9(,EN. u) denotes an operator acting only at sites 0, N - - l ,  N, 
and N +  M -  1. One of the main steps of the proof is to show that these 
boundary operators vanish in the limit N, M ~ ~ .  It should be clear to the 
reader that the coproduct rule (5.2) is going to be crucial for the derivation 
of the quasiparticle picture (5.1). In particular, our proof cannot be easily 
modified to accommodate more complicated selection rules and will there- 
fore be specific for 71,,-spin quantum chains. 

If we can build a composite state of any two states we have to show 
that energy, charge, and momentum are additive under this composition 
and that we can construct all states. Then, the quasiparticle structure 
follows by induction. 

Composite particle states are expected to give rise to a continuous 
spectrum. This is a technical complication in the argument we are going to 
give because it is not possible to use eigenstates, but we must show that the 
resolvent is unbounded. However, for each finite N the Hamiltonian has a 
complete set of eigenstates. We have already argued in Section 2 that the 
resolvent becomes unbounded for any energy if it can be approximated by 
eigenvalues of AH(~ ). This in turn can be ensured by providing a sequence 
of vectors Ilk; E))e that approximate eigenvectors of AH~ ~ to eigenvalue 
E for N large. Thus, we would have to take two limits simultaneously. 
However, a standard argument shows that it is no loss of generality to 
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restrict to the diagonal sequence k = N. The assumption in the induction 
is that we can choose two sequences of states IIN;E~))p~ ~f'Jv and 
IIM; E2))e,. ~ ~ ,  such that in the weak limits of AH ~'~ and T they give rise 
to unbounded resolvents at Ek, eWE: 

lim (AH~)--E1)IIN;E1>>p,=0, lim (TN--e ~e') IIN;EI>>p,=O 

lim (AH~)-E2) I[M;E2>>e2=0, lim (TM--e  w2) IIM;E2>>p2=O 

(5.3) 

We know that such sequences of states exist at least for the single-particle 
states--the perturbative series for IIsQ))p. 

The second major step in the proof is to consider now the state 
IIg; E,>>p, | IIM; E2))e,_ ~JvClv+~. From (5.2) one has 

AH~+M( IIN; E,)) p, | IIM; E2)) e2) 

= (AH ~) [IN; Et )) e,) | IIM; Ez)) e~. 

+ IIN; Et ))v~ | ( A H ~  I IIM; E2))e_,) 

+ C(Aa,v. M)( IIN; g~ ))e, | E2)) p.,) 

TN+ M(IIN; g , ) )  p, | JIM; E2)) e.,) 

= (TN IIN; E~ ))e,) | (TM IIM; g2)) e.,) 

+ ~)(TN. ~)(TN IIN; E,))  p,) | (TM IIM; E_,b p:) 

(5.4) 

The vanishing of the boundary terms in (5.4) can be shown using, e.g, 
perturbative arguments. The crucial point in the argumentation is that the 
momentum eigenstates have normalization factors N -~/2, M -~/2. Any 
operator acting only at boundaries yields only a finite part of these states 
in contrast to the operators TN and AH~ ) which act on the complete chain 
and yield complete momentum eigenstates. The finite pieces of momentum 
eigenstates are suppressed by the normalization factors N -~p- in the 
infinite-chain length limit. For example, for the translation operator TN it 
is easy to verify explicitly that the boundary terms tend to zero at ). = 0 
using precisely this argument. The argumentation for the Hamiltonian is 
analogous but slightly more complicated. A similar perturbative argument 
has already been presented in ref. 37 in order to show the vanishing of the 
Q dependence in the low-temperature regime. 

These rather technical details are spelled out in Appendix A. 
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We have shown that the boundary operators ~(AHN, M) and ~(Tu. M) 
vanish as N, M go to infinity. Thus, in this limit 

lim tAu~,,I - - (El  +E,))(IIN;EI))e ,  | I IM;E, ) )e , )=0  
' ~ ' "  N + M  - - . 

N . M ~ o r v  

lim (ZN+M--e"V'+v'-))(llN; gm)>p, | IIM; E,_))e,)=0 
N . M ~ o c  

(5.5) 

holds. This shows that energy E and momentum P are additive--the 
additivity of the charge Q is obvious. One can always build a basis for the 
space WK = | J t']~ by considering tensor products of basis vectors in Yt~ 
and Jct~M with N + M = K. This is precisely what we have done. Thus, the 
above procedure indeed yields the complete spectrum. 

One should be careful about the requirements that enter in our proof 
of the quasiparticle picture in order not to mistake it as more general than 
it is. Note that the vanishing of boundary terms is a crucial part of the 
proof. However, boundary terms are substantial for conformally invariant 
systems with long-ranged correlations. Also, in the low-temperature phase 
boundary terms play an important role because the free part of the 
Hamiltonian depends on the difference of neighboring spins (see also 
ref. 37). Thus, our proof applies neither to critical points where one might 
have conformal invariance nor to the low-temperature phase. Furthermore, 
we have used the explicit form (2.1) of the Hamiltonian [for example, for 
the selection rules in (5.1)]. 

It should be clear to the reader that our argument relies on a pertur- 
bation series for the single-particle states and is valid only if this series is 
convergent. We will discuss the radius of convergence for the Z3-chain in 
more detail in Section 8. At this place we would just like to mention that 
this perturbative argument cannot be applied to massless incommensurate 
phases because the main limitations on the convergence come from level 
crossings which are characteristic for massless incommensurate phases. 

Note that we have not assumed the Hamiltonian to be Hermitian. In 
particular, the quasiparticle picture should also be valid for ~b ~C as 
long as the single-particle excitations exist and converge. This is indeed 
supported by numerical calculations, c46J 

The argument proving the quasiparticle structure can be refined in 
order to give an upper estimate for the rate of convergence in N of the 
energy of a k-particle state. As an approximation to a k-particle state for 
kN sites, total energy Etot, and total momentum P we may take the k-fold 
tensor product of single-particle states 

IIkN; E,o,)) v := IIN; E~)) e, | ... | Ilg; Ek)) v,. (5.6) 
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with Eto t = Y'.~= 1 El, P = Z~= 1 P~- Now, the deviation from the limit N ~  
is given by 

e<<kN; Eto, ar4(,,I I]kN; Etot>>p--Eto, ~ a ~  k N  

k 

= ]--I e~<<g; Etl] 6~(AHN)IIN;E~>> et = 6~ -k) (5.7) 
I = 1  

(_9(AHN) is some operator that acts only at sites 1 and N. The first equality 
simply uses the definition of the scalar product in tensor products. The last 
equality is more profound and is due to the fact that operators acting only 
at boundaries of the chain are suppressed by N - '  due to the normalization 
factor in the finite Fourier transformation for momentum eigenstates. This 
shows that the deviation of the energy of a k-particle state (k > 1) from the 
limit is at most of order N - k  for N--* oo. Of  course, one might find better 
approximations for the eigenstates and the convergence could be faster. 
Thus, the N dependence of some energy eigenvalue gives only a lower 
bound on the number k of particles involved. 

This general argument is confirmed by our results for the two-particle 
1 7, states. Expanding cos ( x ) =  1-_~x-+(p(x4),  we can read off from (4.19) 

that the first-order correction of the kth two-particle state with respect to 
the boundary of the energy band behaves as N-- ' .  This is precisely what we 
expect from the general considerations. 

This argument shows in particular that in a finite-size system the 
energy of any state remains unchanged to order 1/N. According to the 
argument presented at the end of Section 3, the energies of the fundamental 
particle states have to converge exponentially in N and the energies of 
composite particle states have corrections at most of order 1/N'-. Thus the 
only modification in (5.1) at order 1/N in the massive high-temperature 
phase is a discretization of the momentum (and possible minor modifica- 
tions of the Brillouin zones and selection rulesJ 36)) 

Note that the proof of the vanishing of boundary terms as sketched 
above and presented in detail in Appendix A also directly applies to the 
Hamiltonian (2.2) itself. So far, we have restricted ourselves to periodic 
boundary conditions F~r = FI.  However, one could also impose toroidal 
boundary conditions: "cyclic" boundary conditions FN+I =Co-RF, or 
"twisted" boundary conditions FN+, =co-RF~ -. Even "free" boundary 
conditions IN+, = 0 are well known in the literature. Our argument shows 
that all these different choices lead to the same spectrum in the limit 
N--* or. In particular, our results are valid for all choices of boundary 
conditions and one is free to choose those which seem most appropriate, 
e.g., one can leave the ends of the chain open instead of the unnatural end 
identification for a realistic physical system. 
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Again, this observation for the massive high-temperature phase is to 
be contrasted with other situations. In particular, at the second-order phase 
transition ~b =,~o = 0, 2 = 1 the correlation length becomes infinite and the 
boundary terms are very important. ~47-49~ Even in the massive low-tem- 
perature phase one observes long range order and boundary terms cannot 
be neglected, t37~ 

So far, we have not addressed the question of whether the fundamental 
particles satisfy a Pauli principle or no t - -note  that the above discussion is 
intrinsically insensitive to a Pauli principle because the limit was defined 
such that the spectrum forms a closed set. Nevertheless, for the special case 
17 = 3 and q~ = q~ = n/2, Eq. (5.1) was obtained in ref. 35 supplemented with 
the Pauli principle mentioned below (5.1). Fortunately, due to (4.19), we 
have some control over the finite-size dependence of the scattering states of 
two identical particles in the general case. Up to first order in 2 these finite- 
size effects essentially depend neither on the charge Q nor on the number 
of states 12. Therefore, the nature of the fundamental excitations can be 
determined by looking at one particular choice of Q and n. However, for 
n = 2 one obtains the Ising model, where it is well known that the excita- 
tion spectrum can be explained in terms of one fundamental fermion (see, 
e.g., ref. 50). This indicates that the fundamental excitations for general n 
should be regarded as fermions. In particular, for a scattering state of two 
identical excitations i a n d j  the momenta must satisfy Pi 4: Pj. In a scattering 
state of two d~ferent fundamental particles these two fundamental particles 
can easily be distinguished because they carry different 7/,-charges. There- 
fore, two different particles should not be subject to a Pauli principle (as 
is the case for two different noninteracting fermions). 

6. C O R R E L A T I O N  F U N C T I O N S  

In recent papers a systematic investigation of the correlation functions 
of the 7/3-chiral Potts model in the massive phases has been started. First, 
a non vanishing wave vector was predicted ~33'511 for the massive low- 
temperature phase and its critical exponent was calculated from level 
crossings. Next, perturbative calculations for the massive low temperature 
phase analogous to those to be presented below were reported. ~37) We also 
studied the correlation function for the operator F in the massive high- 
temperature phase numerically ~341 and were able to demonstrate an oscilla- 
tion. In ref. 34 some of the results to be presented below were already cited 
without derivation. Note also that for the massless phases around 2 ~ 1 of 
the ~3-chain correlation functions have been derived in ref. 52 borrowing 
results from conformal field theory. 
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In this section we study correlation functions for the ;73-chiral Potts 
model perturbatively. Before defining correlation functions, we first note 
that the two-point functions are translationally invariant because the 
ground state Iv) is translationally invariant: 

(v[ + r., .+,rrlv> =<vl r,.++,r, Iv> 

(vl + a~,. +ra, lv> = ( vl a,++ ,al Iv) 
(6.1) 

Thus, it makes sense to define the correlation function for an operator S 
by the following expression: 

~ ' +  

~ x + l ~ l  . 1 O ~ X  C_(x) :=(v l  Iv> (vlZ++ Iv)(vlZ, lv) <N (6.2) 
( v l v )  ( v l v )  "- ' 

where Iv) is the eigenvector of the Hamiltonian to lowest energy. Here, we 
do not assume that Iv) is normalized to one and have therefore included 
the proper normalization factors in (6.2). The correlation functions of the 
operators F,, and a_,. have the property 

Cr( - x )=Cr (x )* ,  C, ( -x)=C~(x)*=C~(x)  (6.3) 

such that it makes sense to restrict to positive x. Note that (6.3) follows by 
complex conjugation using (6.1). Explicit calculations show the validity of 
(6.1) and (6.3) as well. 

For simplicity we will first neglect the correction term for the uncor- 
related part as well as the normalization in (6.2) and consider the following 
expression: 

c-(x):=(vl3.++]31 Iv), O<~x<N/2 (6.4} 

The operator S for the 7/3-chiral Potts model can be either F or a. For 
n > 3 also different powers of these operators may be interesting. 

One can use the quasiparticle picture which we have already derived 
in order to rewrite a correlation function Cz(x ) as follows: 

" v l - ~ + ~  IP, . . . . .  P, ,>(p~ . . . . .  p,,IZ.~ Iv> C - ( x )  = E, ,%o ~o" (1-I ,= ~ d p , ) (  = + 

I<vl S ,  Iv>]'- 
(vlv> 2 

(vlv> 
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)( f [(" ) 1)) n ~ l  i =  j 

I(Pl ..... P,,I ~1 Iv)l'- x (6.5) 
(vlv) 

where we have inserted a complete set of normalized n-particle states 
IP~,. . . ,Pn).  Representations similar to (6.5) have been used in quantum 
field theory for a long time (see, e.g., ref. 53) and are well known to be use- 
ful for the evaluation of correlation functions of statistical models (see, e.g., 
ref. 31), According to (6.5), one could compute the correlation function 
Cz(x )  by computing its "form factors" (p~ ..... P,,I ~ Iv), but one can 
even derive interesting results without doing so. Clearly, if the ground state 
[v) has nonzero momentum Ply> :/: 0 we expect an oscillatory contribution 
to the correlation function. However, one can read off from (6.5) that an 
oscillatory contribution is also to be expected if Ply> =0,  but the model 
breaks parity, which precisely applies to the massive high-temperature 
phase of the chiral Potts model. The correlation functions of massive 
models in general have an exponential decay, i.e., C_-_(x)=e-X/r 
where f - ( x )  is some bounded function. According to (6.5) we also expect 
an oscillatory contribution of the form e "-'~-'/LI. In summary, we expect 
correlation functions of the approximate form 

C z (  x ) ~ e --x'/~" + i(2nx/LI (6.6) 

is called the 'correlation length' and L is the the "oscillation length" (L -~ 
is the "wave vector"). 

More precisely, for the 713-chiral Potts model the operator F~ creates 
Q = 1 single-particle excitations from the ground state. The dispersion rela- 
tions of these particles clearly violate parity. Therefore we expect that Cr(x )  
is of the form (6.6). The action of the operator cr~ is much less spectacular. 
In particular, it leaves the charge sector Q = 0 invariant and thus it need not 
necessarily have an oscillatory contribution. In fact, from (6.3) we see that 
C,(x) should be real which in view of (6.6) implies the absence of oscillations. 

Symmetries of the Hamiltonian translate into symmetries of the form 
factors. In certain cases these symmetries are already sufficient to compute 
the oscillation length L. In Appendix B we demonstrate this in a few cases 
for the correlation function Cro(X) of the Z,,-chiral Potts model. For 
Re(~b) = n or one observes a shifted parity symmetry 146~ that can be derived, 
e.g., along the lines of ref. 14. Using this symmetry, one can show (see 
Appendix B) that 

C re( X ) = e2~i~/ z'f Q. r( x ) (6.7a) 



712 Honecker 

with 

fQ, r(x) ~ R Vx 

L = ~  for ~b=rn, r ~ Z  or q ~ R ,  Re(q~)=0 (6.7b) 

2n 
L = - -  for q ~ R ,  Re(q~)=rc and 0 < Q < n  

n-2Q 

Let us now turn to the explicit computation of correlation functions 
for the Z3-chain. In order to be able to calculate the correlation functions 
we need to know the ground state Iv). We will calculate it from the free 
ground state LGS) using the perturbation expansion (3.7). We should 
stress again that although we assume the free ground state [GS) to be 
normalized to 1, this is not necessarily true for the complete state Iv). The 
expansion of the ground state Iv) provides us with an expansion for the 
correlation functions in powers of 2 

c-(x)= ~ 2"c~(x) (6.8) 
v=0 

where we again neglect an irrelevant overall normalization factor which 
depends on 2. Note that according to (3.7), a kth-order expansion of the 
ground state yields a (k + 1)th-order expansion of the ground state energy 
as a byproduct. 

Using the state (4.1), one can calculate for the 7J3-chiral Potts model 
in the high-temperature phase the first orders in 2 for Or(X): 

el,k/3 
c~(x) ='L-, o, c~(x) = / ( " '  3~g 

(6.9) 
1 { N e -'(2r ) 

CT}(X) = ~ "52 0x" ~ T + ~'x" ] 2 q-6"2ei~24'/3) 

In order to save space we present higher orders only in the final, properly 
normalized form (6.15). 

For the first orders of cr we obtain 

c ~ ' ( x )  = I, c~ ~(x) = 0 

c~2),x) = 3_~_, (fix. o + ~ + N6__~6) (6.10, 

Again, we have postponed presentation of higher orders to the final, 
properly normalized result (6.14). 
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Let us now discuss the correction terms in 
creates charge such that charge conservation 
(vl Fx[v) = 0  for all x. Thus 

(6.2). The operator F,. 
implies (v[ F.~ Iv) = 

or(x )  Cr(x)=--  (6.11) 
( v l v )  

The corrections for the operator a are more complicated. Using the expan- 
sion (3.7) for the'ground state, one obtains, independent of x, 

(vl ~+ Iv) = (vl ~,. It')* 

�9 22N--3 (N--3) ~3 
(vl a, . lv)  =1 + 18~f2 + 2  3 54r~ 3 

+ 248--i-@ 21 {9isin(2q~/3)+9-4N+(28N-90)cg " - 3 ~  z + (N-3)'-'~8cg "- J 

+ (9(25) Vx (6.12) 

In order to be able to evaluate (6.2) we have to divide (6.12) by the norm 
squared of [v) before we subtract it. We apply 

/ '  
+ a.2" = -- a~ " 

v =  I / p = 0  v =  1 / 

to the norm of Iv) 

N ]  ~2 s U 0%73 , N ~4 (7~ f 2 - 1 ) + ~ 5 _ ~ + 6 (  
(v I t') = 1 +)t2 1--~2 § )~3 5-~3 § 8 - ~ - ~  3.~ 2 - 

) 
) 

(6.13) 

and obtain a normalized expression for the one-point function (6.12). It is 
not surprising that up to the order calculated one has the equality 
I(v[ a.,.Iv)/(vlv)l=lC~(1)[ at the dual point in the low-temperature 
phase. In fact, this is to be expected from the proof of duality presented in 
the Appendix 6f ref. 37 [Eq. (A.5]. 

Inserting (6.12) and (6.13) into (6.10) leads to 

C~'(x)  = C ~ ( x )  = 0 

C~'-~(x) =5-~- " 
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C~(x)  1 -6x.o .~,_ +~-~ +6~. , 
= 2-~- ' 3~ "- ~'- 

+ 6 x ,  2(1 + 2cg2) t- 1--~2 (6.14) 
, _ 3~2 

Note that also the N dependence in (6.9) is due to the N dependence (6.13) 
of the norm of Iv). If we normalize Iv) properly to 1, we have 

C~(x) = 6,., o 
e W3 

C~-~(x) =6,. j 3c ~ 
(6.15a) 

c?~(x) =-~_ ._  , ~ + 6 , .  

1 { . . '  ( 1  8 )  ( 2  8 )  ~..~r 5ei~k l 
C ? I ( x ) = ~ - - ~  - -6  v ei~/3 -~-5.. l- -I-6,..~e -i~/3 _ . ._ ~ +6.,..., _ j  

which obviously is N independent. Finally, in this case we obtain for the 
fourth order 

C~(x)  1 ._[_4e_i~2~k/3l) 9 3 

+ 6.,. 2 \f8ei'24'/3(19cg2-4)3.r + 3e-"4w3'-8cgz20ei~2w3' 3e -.-~, 4~/3'). 

6 35ei(4'/3)~ + 6.,. 3 (40-~,-- 7 + 4@_,) + .,'. 4"~ff-@--2 j (6.1Sb) 

which is also N independent. More precisely, C~(x)  and C~(x)  are 
independent of N if N > 2k and x ~< k. 

Co(x) is real and positive for all values of q~ and cp up to the order 
calculated. However, it is not easy to read of from (6.14) what the form 
might be for large x. Thus, we specialize to ~ = ~0 = g/2 and calculate two 
further orders for Co(x): 

(0) 111 Co (x)= co  (x)= C~%v)= C~(.,c)=0 

C~'-'(x)=~{46.,.o+6,..,} 
C~'(x) = ~ { 56,..o + 26.,..,_} (6.16) 

C~'(x) = ~ { 1906,.. o - 136,., + 386,.2 + 606.,.. ~} 
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As a byproduct  we verified in this case two further orders of the equality 
I(vla.,.Io)/<vlv)l=lC~l)l at the dual point in the low-temperature 
phase. 

In general Cr(x) has a nonvanishing imaginary part  and therefore is 
worthwhile considering it in more detail. Thus, we specialize again to the 
superintegrable case r = ~p = n/2 and obtain after calculating two further 
orders 

C~l(x) =~x.o 

C~'(x)=6.,. , (~+ i ~ )  

C ; ' ( x )  = 1 {6,.., + 26,-2} +/-lX/~x/-83 { -  d,- ' , + 26.,. 2} 

1 /46,. " +I06~ 4 + {46,. , -  106, , + 2 0 6 . ~ }  c ~  '~ (:")=~i " ' -  t 2 - - 4 3  . . . . .  

~4 1 {276~1+186~.,+2106,.~_706,.4 } C r'(x) =1--~ . . . . . . . . .  

iX + 1 - ~  { - 276,.. , + 186.,.,_, + 706.,.,4} (6.17) 

5 1 C~-)(x) = 2---i~ {456.,.., + 1086.,..,, + 2526,..4-- 1266.,.. 5} 

,,/5 
+ 2 - ~  { 156_,.. 1 -- 366.,..2 - 146.,..3 + 846x. 4 + 426,.. 5} 

1 
C~)(x) = 39,366 { 3816,. 1 + 2146.,., + 2314fix. 3 

+ 7846.,-, 4 + 23106x. 5 -- 18486x.6} 

+ t ~  { --3816.,.. t + 214&.2--  7846x. 4 + 2310d,., 5} 

Of course, we still have to calculate the sum (6.8). Thus, changes of signs 
in individual orders need not necessarily turn up in the final result. In fact, 
it turns out that the imaginary part  of Cr(x) is always positive up to order 
6 because the smallest orders are positive and they dominate the others. 
However, for sufficiently small 2 the real part  does indeed change signs 
around x = 4. Although we are not able to verify if it becomes positive 
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again around x =  12 (which would need more than double the orders 
which we have calculated), it is in good agreement with the expected form 
(6.6). Therefore we fit (6.17) by a complex exponential function. In sum- 
mary, (6.17) indicates that 

C r ( x  ) = ae(2ni/L-llCrlx q_ (1 - -a )  fix. o (6.18a) 

C,(x) = pe-"/r + q~x. o (6.18b) 

such that Cr(x) is of the form (6.6) for x > 0. In (6.18) we have also taken 
into account that from (6.16), C,(O)/C~( 1 ) ~ 4 independent of the correla- 
tion length (~. 

If (6.18a) is the correct form for Cr(x), we infer from (6.17) that L is 
about 14 for small 2. We can also see from the higher orders that L 
increases with increasing 2 such that it might well be singular at 2 = 1. The 
correlation length ~ tends to zero as 2 ~ 0. This implies that--af ter  proper 
renormalization of the Hamil tonian-- the mass gap becomes infinite at 
2 = 0. It has already been observed in ref. 32 that there are physical reasons 
to divide (2.2) by x/~, which would have exactly the effect of infinite mass 
at 2 = 0 .  Fits to (6.18) for 2E{1/4, 1/2,3/4} in the superintegrable case 
are given in Table I. The estimates in Table I were obtained as follows. 
First, ~ r  was estimated by calculating Re{In[Cr(x)/Cr(x+ 1 ) ] } - l  and 
averaging over x. Next, the zero of Re[eX/erCr(x)] was estimated by 
linear interpolation for two neighboring values and L/4 was obtained by 
averaging. Finally, a was estimated such that the difference 

Re[ Cr(x)]-ae-"/~rcos (~-~ -) (6.19, 

is minimal for x =  1, 2. That this procedure yields reasonable fits is 
demonstrated by Fig. 1, which shows the stretched correlation function 
eX/r in comparison to the fits. The "error bars" are not really error 
bars, but are given by ae (x-6)/r which gives an idea of how much the 
values have actually been stretched and what might be the contribution of 
the next orders in the perturbation expansion. The agreement for all x not 
only in the real part but also in the imaginary part is convincing. 

Table I. Parameters for the Correlation Functions 16.181 at ~=~0=~/2 

2 ~r a L ~ p q Pmi. LPmi./2n 

0.25 0.55(3) 0.55(5) 14.3(2) 0.25(2) 0.35(4) 0.32(4) 0.471 1.07(2) 
0.50 0.9(1) 0.59(3) 16.5(8) 0.38(4) 0.35(3) 0.24(3) 0.401 1.05(5) 
0.75 1.5(6) 0.64(3) 18.3(8) 0.55(6) 0.36(2) 0.09(2) 0.308 0.90(4) 
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Fig. 1. Correlation function Cr(x) stretched by e x/~r in comparison to the fits (6.18a) at 
~= ~o =g/2, 2 = 1/2. The "'error bars" are given by ae Ix-6vCr, which conveys an idea of how 
much the values have actually been stretched. The oscillatory contribution to Cr(x) is clearly 
visible. 

Tab le  II shows the values  CPrert(x) co r r e spond ing  to Fig. 1. This  table  
also con t a in s  the numer i ca l  results for the cor re la t ion  func t ion  c~um(x)  
which were ob t a ined  in ref. 34 for N =  12 sites at  q~ = q~ = n/2,  ~. = 1/2. The  
ag reemen t  be tween  the results of  bo th  me thods  is good. This  shows on  one 
h a n d  that  h igher  orders  are indeed negligible in (6.17) for x < 7 and  on  the 
o ther  h a n d  that  the finite cha in  length  does n o t  cons ide rab ly  affect the 
cor re la t ion  func t ion  C r ( x ) .  

Let us n o w  discuss the impl ica t ions  of  (6.15) u n d e r  the a s s u m p t i o n  
that  (6.18a) is the correct  form for general  values  of  the chiral  angles. F r o m  

Table II. Perturbative Results (6.17) and Numerical Results at N =  12 Sites for 
the Correlation Function Cr(x) at ~=~0=n/2,  4 = 1 / 2  

X 0 1 2 3 4 5 6 

C~a(x) 1 0.18868 0 . 0 4 5 6 1  0.00992 0.0091 -0.00088 -0.00074 
+0.07384i +0.03980i +0.01747i +0.00674i +0.00263i 

c~m(x) 1 0.18881 0 . 0 4 5 8 7  0 . 0 1 0 0 4  0 . 0 0 1 2 6  --0.00056 --0.00080 
+0.07385i +0.03967i +0.01737i +0.00679i +0.00224i 
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the leading orders in (6.15a) we read off the following identity for the ratio 
of Cr(1) and Cr(2): 

Cr(2) = [ei(2~/3)/6c~2] 22 + r e i~/3 
- -  2 + (_9(22) (6.20a) 

Cr( 1 ) (ei~/3/3c~) 2 + (_0(22) - 2~ 

On the other hand we immediately obtain from (6.18a) 

Cr(2) _ e-I/r (6.20b) 
Cr( 1 ) 

Comparison of (6.20a) and (6.20b) leads to 

6re 1 
L =  Re(~)' ~ r =  In {2/[2cos (cp/3)]} - I m ( ~ ) / 3  (6.21) 

for small values of 2. It is noteworthy that we obtain the same result for 
the oscillation length L if we apply a similar argument to Cr(x l ) /Cr (x2)  
in lowest nonvanishing order with xl ,  x2 ~ { 1, 2, 3, 4}. At ~ = M2, (6.21) 
yields the approximations L = 12, ~r = 0.52, 0.80, 1.2 for 2 = 0.25, 0.50, 0.75. 
The agreement with the numbers of Table I is very good. Thus, for very 
high temperatures the oscillation length L is proportional to the inverse 
chiral angle ~b-1. In particular, the oscillation vanishes smoothly for ~ ~ 0. 
In ref. 32 it was shown that for very high temperatures the minimum of the 
dispersion relation of the fundamental particles is also proportional to ~b. 
More precisely, we read off from (4.6) that the minimum of the dispersion 
relation is, in first-order perturbation theory, at Pm~, = Re(~)/3. Thus, we 
obtain from (6.21) for very high temperatures 

Pmi, Llx~ o = 2n V~b, ~p (6.22) 

Furthermore, the second order in (4.6) shows that the minimal momentum 
Pmin decreases with increasing 2 (compare also ref. 34). Similarly, we read 
off from (6.15) that the inverse oscillation length L -~ also decreases with 
increasing inverse temperature 2. Thus, (6.22) has a chance to be valid for 
all values of 2 in the massive high-temperature phase. Indeed, using the 
values of Pmi, given in Table 8 of ref. 32, we see that Pmin L =2 n  holds 
quite accurately for ).=0.25,0.5, 0.75 at ~=~p= n /2  (compare Table I). 
Using numerical methods, we checked in ref. 34 that Pmi, L = 2n is indeed 
valid within the numerical accuracy for general values of the parameters. 
The identity Pmin L = 2n can, e.g., be derived from the form factor expan- 
sion (6.5) if the Hamiltonian has suitable symmetries, as is demonstrated in 
Appendix B for certain special cases. However, it may well be that in 
general this relation is not exact, but an excellent approximation. 
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Note that even at ~b = q~ = n/2 the correlation lengths ~r  and ~ are 
clearly different. Furthermore, ~ coincides with its dual in the low- 
temperature phase, whereas ~r  does not. (37) Recall that for the correlation 
function C,(x) only the spectrum in the charge sector Q = 0 is relevant but 
Cr(x) comes from the Q =  1 sector. Using (6.5), this explains the agree- 
ment of ~, with ~ in the low-temperature phase; in this phase all charge 
sectors have a spectrum that is identical with the spectrum in the Q = 0 
sector at the dual point in the high-temperature phase. (371 

7. THE PARITY-CONSERVING POTTS CASE 

So far we have studied correlation functions for general values of the 
parameters and for the superintegrable case. In this section we discuss the 
standard parity-conserving 7/3 case in more detail and compare the corre- 
lation length to the inverse mass gap. We also examine the dispersion 
relation of the particle/antiparticle pair more closely for this special case 
and show that, for general )., there is no simple relation between the square 
of the energy and the momentum like the Klein-Gordon equation. 

First, we note that for ~b = ~o = 0, Eq. (4.5) simplifies considerably and 
we can calculate even higher orders: 

m(2) := AEI, o(0, 0) = AE2. o(0, 0) 

1 ( 3 1799. 4 1099 25_1586526 
= x / ~  6 - - 4 2 - - 2 ) ' 2 + 2 - 1 6 - 2  +1-~-8 262-----~ 

163717 7 4564375 ) 
+62--2-9-8~)' 68024448)' 8 +60()' 9) (7.1) 

In this case the mass gap is located at zero momentum. Therefore, we 
defined (7.1) as m()'). With respect to the quality of the approximation 
(7.1) we mention that, e.g., comparison with numerical values shows that 
the accuracy of the series (7.1) is good for all )' e [ 0, 1 ]. However, (7.1) is 
an alternating sum and gives only good approximations if an even number 
of orders is used. In particular, close to the phase transition 2 = 1 higher 
order contributions do not always improve the approximation, which 
reflects that close to ). = 1 this perturbation series is slowly convergent. 

It is well known that the critical exponent for m().) at ). = 1 equals 5/6. 
The series equation (7.1) can be used to verify this critical exponent with 
a DLog-Pad~ analysis. In fact, this check has already been performed in 
ref. 4. One can also use (7.1) or a numerical evaluation of the mass gap 
m().) in order to test the critical behavior throughout the massive high- 
temperature phase. One finds that ( 1 -  2) 5/6 m().) is a very slowly varying 

822/82/3-4-8 
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function (see also refs. 32 and 54). This means that the normalization of the 
Hamiltonian (2.2) is indeed meaningful even far away from the critical 
region. 

Next we will discuss the correlation function Cr(x) for ~b = q~ = 0. If a 
statistical system has an isotropic field theory as a limit, the correlation 
length is related in this limit to the inverse of the smallest gap between the 
ground state and the first excitationJ 5~ Therefore, one expects a relation 
~ ~ m ( 2 ) - U  5~ Note that for small values of 2 we expect a different 
behavior according to (6.21): ~ r  ~ 1n(2/2)-~. We will now study these two 
relations more closely by considering the correlation function Cr(x). First, 
we specialize (6.15) to ~b=cp=0 and calculate two further orders. This 
leads to 

C ~ l ( x )  = 6.., o 

c ~ ( x )  = . ,  
3 

C?'(x) =~2 {6.,.., + 26.,.. 2} 

1 {56~. +146, . ,+156. , . .3} c ? ' ( x )  =- i -  ~ . . ,  .._ 
(7.2) 

1 
C~ ' (x )  = 1 l--i- ~ {3156.,. 1 + 4786.,.. 2 + 8526x. 3 + 6306.,..4 } 

1 
C ~ ( x )  209952 {35256,..1 +58706.,.._,+90076.,..3+ 120166.,.. 4 + 68046.,_. 5} 

1 
C ~ ( x )  - 3779136 { 447446,. ~ + 776596,.. 2 + 1119526.,.. 3 

+ 1531966.,. 4 + 1629406,.. 5 + 748446.,.. 6} 

Using (7.2), one can calculate the correlation length ~ r  by the procedure 
described in the previous section. We just list some pairs [2, ~r] :  

[0, 0] ,  [0.00005, 0.094(2)], [0.0005, 0.121(3)], 

[0.005, 0.167(6)], [0.05, 0.27(2)], 

[025,0.50(5)] ,  [0.5,0.8(1)] ,  [0.75, 1.2(2)] 

Figure 2 shows a plot including more estimates for the correlation length. 
At 2 = 0 there is no correlation between different sites, i.e., the correlation 
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Fig. 2. Correlation length for Cr(x) in the massive high-temperature phase on the parity- 
conserving line q~ = r = 0. The points indicate estimates obtained from a pertturbative evalua- 
tion of Cr(x). The lines indicate the approximation (6.21) for ( r  and the properly normalized 
inverse mass gap m(2) - I .  

length is zero. One observes that it increases drastically for 2 > 0. It is 
clearly different from zero even for very small values of  2. We have also 
plotted the estimate (6.21) in Fig. 2. This crude estimate fits the numerical 
results surprisingly well for all values of  2 accessible to us. In particular, it 
nicely reproduces the behavior for small 2, as is expected from our deriva- 
tion of the estimate. In Fig. 2 we also plot the properly normalized inverse 
mass m(2) - I .  The agreement is good for 2 > 0.3. For  2 < 0.1 one observes 
a clear disagreement. Note that in this region C r ( x ) / C r ( x  q- 1) ~, e ]/r < 10 
and one should therefore expect that at least in this region the finite lattice 
spacing is important.  

It has been observed ~32~ that for ~ = r = 0 the dispersion relation (4.6) 
agrees with a Kle in-Gordon  dispersion relation up to order ,~2. Further- 
more, it was shown c55~ that at the second-order phase transition ~ = ~p = 0, 
2 = 1 the dispe~'sion relation is of  Kle in -Gordon  type with mass m( 1 ) = 0. 
Using the abbreviation 

K :=  2sin(P/2) (7.3) 

for the lattice analog of  the momentum,  we can specialize (4.6) to ~b = ~p = 0 
and calculate two further orders. This yields the dispersion relation 
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g(K) :=dEl, o(P, 0, 0) =AE2,o(P, 0, 0) 

~ 6+2(K2-2)2- (K4-6K-'+6) 

23 
+ i 8  (2K6 - 14K4 + 19K'- + 18) 

24 
- - -  (15K 8 - 152K 6 + 531K 4 - 738K 2 + 358) 

324 

25 
+ 2 - ~  (63K1~ -- 764K8 + 3214K6 

- - 5 0 8 7 K  4 +  l121K z + 2 1 9 8 ) ~ +  6o(26 ) 
J 

(7.4) 

for the two fundamental  quasiparticles. The Kle in -Gordon  dispersion rela- 
tion predicts 

~(K) = [m(2)  + a ( 2 )  K 2] l/_~ 

K 2 K 4 K 6 

= m ( 2 )  + a ( 2 )  2n-m-~-a(2)2  8m(2)3 t-a(2) 3 16m(2)-----------g 

5K 8 7K l0 
- a(2) 4 128m(2)7 + a(2) 5 256m(2)9 + (9(K Iz) (7.5) 

where we have included a free normalizat ion constant  a(2) which 
corresponds to the velocity of  light. Rewriting (7.4) in the form (7.5) leads 
to 

2 
r  = m(2) + ~ ( --443524 + 361823 - 275422 + 19442 + 5832) 

lAY 2m(2) 

162 z K 4 
- - - ( - - 2 2 2 1 2 3  + 56722 + 3242 + 9 7 2 ) - -  

243 8m(2) 3 

25623 
+---77---, ( - 2 2 3 2 z  + 1442+ 162) - -  

E l  

K 6 

16m(2) 5 

409624 5K 8 
1 3 ~  (1342 + 135) 128m(2)-------- 3 

7K ~o 
+ 3276825 256m(2)~ t- ~(2 6) (7.6) 
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In (7.6) the coefficients of  K" with lowest order in 2 agree with the 
K le in -Gordon  dispersion relation (7.5). 6 However,  using m().) as in (7.1) 
and fitting a(2) from the coefficient of  K 2, we find that  all but these leading 
orders disagree with (7.5). Thus, al though a K le in -Gordon  dispersion 
relation is certainly a good approximat ion  to (7.4), it is unfortunately not 
the exact form. 

It happens  quite frequently in two-dimensional  quan tum field theories 
that  the dispersion relation is s in-Gordon or s inh-Gordon.  However,  even 
these possibilities can be ruled out because the first five orders of  these 
dispersion relations agree with K le in -Gordon  [ s in (x ' - )+(9 (x6 )=x  2= 
sinh(x 2) + 60(x6)], but the deviation from Kle in-Gordon occurs already at 
order K 4. Therefore we consider an even more  general dispersion relation 
of the form 

g(b(A) a(2) KZ)] i/2 
e ( K )  = m(2) + ~(--~ J 
g(x)  = x + x 2 + c3 X3 -[- c4 x4  -Iv c5 X5 --[- (-~(x 6) 

(7.7) 

which contains the K le in -Gordon  relation (7.5) for b ( 2 ) ~  0. In particular,  
(7.7) is a good approximat ion  to the K le in -Gordon  dispersion relation for 
small b(2). Equat ion (7.7) would also include both the s in-Gordon and 
s inh-Gordon relations for cz = 0 but since this has already been ruled out 
c2 has been absorbed in b(2). Determining from the first orders of  the 
Taylor  expansion of (7.7) with respect to K 2 first m(2), then a(2), b().) and 
c3 it turns out that  c3 depends on 2. Thus (7.7) can be ruled out if the 
function g is required to be universal for all 2. 

8. C O N V E R G E N C E  OF S I N G L E - P A R T I C L E  E X C I T A T I O N S  

As far as the p roof  of  the quasiparticle picture is concerned the main 
open question is the convergence of the single-particle states, or equiv- 
alently the existence of the limits N ~ oo of the corresponding eigenvalues 
of the Hamil tonian.  We have argued in Section 4 that  convergence of the 
per turbat ion expansions is sufficient to guarantee the existence of the limits 
N ~ co. Therefore we will discuss the radius of  convergence for the pertur- 
bat ion expansion of the single-particle excitations in this section. 

For  bounded ope ra to r s - - in  part icular  finite dimensional ones - -one  
could use criteria involving opera tor  norms similar to those for von 

According to ref. 55, one should have ~'(K) = 3 IKI at ). = 1. At 2 = 1 the series (7.4) no 
longer really converge. Nevertheless, it seems that (7.4) is compatible with g(K) 2 =9K' at 
2=1. 
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Neumann series. Unfortunately, the potential for A/4I,,) ~--Jv as defined in (2.2) 
and (2.14) is unbounded if N is not fixed. Thus, we have to apply the 
slightly more complicated Kato-Rellich theory of regular perturbations. 
Reviews of this subject can be found, e.g., in refs. 56 and 57. The main 
results we are going to use were originally published in refs. 58 and 59. The 
theory of Kato and Rellich applies in particular to operators of the form 
(3.1), i.e., H ( 2 ) = H o + 2 V .  

Suppose that the single-particle eigenvalues A E  have a nonzero dis- 
tance from the scattering eigenvalues (the continuous spectrum) at 2 =0.  
Then it is clear from the discussion in the previous sections that these 
eigenvalues are nondegenerate and isolated. In particular, the resolvent 
( A H ~ I ( 2 ) - - z )  - '  is bounded for I d E - z l  >0. Restricting to the Hermitian 
case, this is sufficient to guarantee that the J H ~ ( 2 )  are an analytic family 
in the sense of Kato. In this case, the Kato-Rellich theorem (ref. 56, 
Theorem XII.8) may be used to guarantee a nonzero radius of convergence 
r o > 0 for the single-particle eigenvalues of z/H~)(),). 

In order to obtain explicit estimates of the radius of convergence one 
needs the inequality 

II Vla> II ~ ~t- IIHo la> II + ~" II la)I[ (8.1) 

on ~(Ho),  which in our case is dense in the the complete Hilbert space ~ .  
Then the isolated point eigenvalues of H(2) are convergent at least for 

2 < r l  := y/-- i (8.2) 

as long as these eigenvalues do not come h~ contact with the cont&uous spec- 
trum/ 59) On one hand this criterion is very simple, and on the other hand 
not only must one estimate the constant ~ ,  but also examine the level 
crossings between single-particle excitations and scattering states. There is 
another estimate r2 that guarantees the separation of eigenvalues as well 
but gives smaller radii of convergence. For self-adjoint Ho with isolated 
eigenvalue E~ ~ where the nearest eigenvalue E~l ~ has distance e : =  
IE~,~176 [e-l=llg(E~o~ ], the perturbation expansion of Eo(2) is 
convergent for 

2<1"2 := 2[,~. + ,r +e ) ]  (8.3) 

and there are no crossings with neighboring levels. In order to compare the 
estimates (8.2) and (8.3), let us assume ::r and ]E~~ =e. For this 
almost optimal case one has r l - -4r2 ,  showing that the criterion (8.3) is 
much more restrictive. 
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Let us now apply these general results to the present case of  7/,,-spin 
quan tum chains. For  nondegenerate  single-particle eigenvalues the 
Kato-Rel l ich  theorem can be applied to guarantee a positive radius of  
convergence r o. Then we know from Section 5 and Appendix A that  the 
spectrum of AH~)(2)  is a quasiparticle spectrum for 2 < ro. This fact can be 
used to calculate the constant  "U and obtain explicit estimates r~ (where 
level crossings still have to be discussed) or  r2. One can obtain the estimate 
(8.1) with ~r = 0 using Schwarz'  inequality: 

(al AVla> 
~e" := sup (8.4) 

to> ~ I[ /In~,~o la)II 

In general, this supremum need not be finite, but  then it is very difficult to 
ensure convergence at all. In our case, the impor tan t  observat ion is that  
due to the quasiparticle picture we can evaluate (8.4) exclusively from the 
single-particle excitations. To  see this, one performs a first-order expansion 
in 2 for any composi te  particle state, compares  coefficients, and uses the 
quasiparticle proper ty  to expand the expectation values of  AH~) o and A V 
in single-particle excitations. Thus,  "/: can be calculated as 

p(( s Q IIA VII sQ))p 
" / / ' = m a x  i,,~ (8.5) 

Q.e IIAHN. o Ilsa>>ell 

In order to implement  this p rogram explicitly we specialize to the case 
of  7/3 with the parametr iza t ion  (2.10). At 2 = 0  bo th  single-particle eigen- 
values are isolated for - rt/2 < cp < r~/2. This guarantees a nonzero radius of  
convergence ro. 

The simplest case is the pari ty-conserving case ~ = ~p = 0. Here, the 
maxima are located at zero m o m e n t u m  P = 0 and both  charge sectors are 
degenerate. Fur thermore ,  we have I[AHN. o~3) [isQ))o l[ =e=E~0  ~ F rom (7.1) 
we can therefore read off ~ = 2/3, or, in terms of radii of  convergence, 

rt = 3/2, r2 = 3/8, for n = 3 , ~ b = ~ o = 0  (8.6) 

rz = 0.375 is certainly too small which can easily be seen applying a naive 
ratio test to (7.1). Extrapolat ing mt")/m "'+~ to v = ~ ,  one obtains an 
estimate for the radius of  absolute convergence of about  1.3. Thus, for 
~b = cp = 0 the radius of  convergence is expected to be close to the boundary  
of the phase 2 = 1 which is also supported by the calculations in Section 7. 

For  general angles 0~<~o<n/2, the free part  of  the Hamil tonian 
t3) HAHN. o I[sQ))o [[ is minimized for Q = 1 and the potential e((sQ[] A V IlsQ)) p is 

maximal for P=ck/3. Thus, we read offfrom (4.6) f = {x/~ sin[ (rt - ~0)/3 ] } - l  
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Furthermore,  one has e = 8sin [ (re - ~o)/3 ] - 4sin [ (rr + ~o)/3 ] and E~o ~ = 
4 s in [ (n -~o ) /3 ] .  This amounts  to the following radii: 

", = x /~  sin ( ~ )  

(8.7) 
sin((g - q~)/3)[ 2sin((r~ - cp)/3) - sin((~ + ~o)/3 ] 

r2 = 2[ 3sin((~ - cp)/3) - s i n ( ( n  + q~)/3) ] 

for n = 3, 0 <~ cp < n/2. For  cp--. n/2 the situation is contrary to that at 
~b = ~o = 0. The Q = 2 particle state becomes degenerate with two Q = 1 scat- 
tering states at ~o = ~/2 such that  the radius of convergence must  tend to 
zero for ~o ~ ~/2. Whereas r 2 has precisely this property,  r~ tends to 
0.866 .... which is certainly too large. 

Because for small ~0 we would prefer the large radius of  convergence 
r] but at cp ~ z~/2 this is much too large and r2 seems more appropriate ,  we 
have to enhance the estimate given by r~ by a discussion of level crossings 
between single-particle states and scattering states. For  0 ~< ~o < z~/2 the first 
level crossing of this kind will take place-between the Q = 2 single-particle 
excitation and a two (Q = 1)-particle scattering state. 

It is very difficult to determine those values of  2 explicitly and precisely 
where they take place. Therefore, we will use the first-order approximat ion  
of the perturbat ion expansion. We are looking for those values of 2 where 
a single point P exists such that  x:=2AE,.o(P/2, qb, ~o)-dE,_.o(P,~, q~) 
vanishes. The fact that we are looking for no real crossings but x = 0 
implies dx/dP=O. Inserting (4.6) and (4.7) up to first order leads to the 
condition 

sin ( P - ~ )  = sin ( P + ~ )  (8.8) 

Equation (8.8) has a solution 

P = 2zc/3 (8.9) 

that  does not depend on ~b. Now we can solve the linear equation x[).o=0 
for the value 20. One obtains 

20 = cos(cp/3) - x /~  sin(~o/3) (8.10) 

cos(~b/3) + x /3  sin(~/3) 

Figure 3 shows a plot of the estimates (8.7) and (8.10) for the self-dual case 
~0=~b. Note  that  r~ and r2 are independent of 4). However,  we have 
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assumed  tha t  the H a m i l t o n i a n  is H e r m i t i a n  an d  therefore ~b mus t  be real. 
F o r  q~ close to n/2,  20 is smal ler  t h a n  r2 which is an  a p p a r e n t  con t r ad i c t i on  
because  there are no  level crossings for ;t < r2. Remember ,  however ,  tha t  20 
has been  ca lcula ted  app rox ima te ly  such that  this difference is no t  signifi- 
cant .  At ~ = ~o = 0 we find 20 ~ 1. This  is reassur ing  because p e r t u r b a t i o n  
expans ions  should  n o t  be val id b e y o n d  the second-order  phase t r ans i t ion  
at 2 = 1. A l though  20 was es t imated by look ing  at nonze ro  m o m e n t a  there 
are also level crossings in the z e r o - m o m e n t u m  sectors at 2 = 1. Thus ,  the 
radius  of  convergence  is indeed smal ler  t h a n  r~. Still, ou r  results agree 
in m a g n i t u d e  with the in tu i t ive  expecta t ions  from the "ra t io  test". The  
dot ted  d i a m o n d s  in Fig. 3 indica te  the two models  whose  spectra  are 
presented  in Figs. 2 an d  3 of  ref. 3. F o r  the left d i a m o n d  one  expects a con-  
verging p e r t u r b a t i o n  expans ion ,  whereas  in the o ther  case it should  no t  
converge  (compare  ref. 34). Indeed,  bo th  est imates  r2 and  20 make  this 
d is t inct ion.  

1.4 

1.2 

1 

~.0.8 

0.6 

0.41 

0.2 

0 0 012 

, i i , i i t 

............... II 

..... - ............. o Fig. 3 of[34] 
I r2 ........... ~L2 .......... 

o Fig. 2 of [34] .... : ~ ' ~ .  

014 , ,4  

Fig. 3. Radii of convergence and boundary of the massive high-temperature phase for the 
Hermitian Z3-chain. r I is an estimate ensuring convergence if no level crossings between pohlt 
and continuous spe'ktra occur. The estimate r, also ensures the absence of level crossings. The 
perturbation series are definitely convergent for 2 <r_,, although the true radius of con- 
vergence is larger. It extends until the value ),o, where the first level crossings between 
fundamental quasiparticles and scattering states occur. 20 has been approximated using a first 
order perturbation expansion which is surprisingly accurate. The boundary of the massive 
high-temperature phase close to 2 = I has been approximated using a second order perturba- 
tion expansion. Note that r~ and r 2 are independent of ~b up to the order calculated, whereas 
for 20 we put q~ = ~. 
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For completeness we have also included an estimate for the boundary 
of the massive high-temperature phase in Fig. 3. At this boundary, levels of 
the Q =  1 particle with generically nonzero momentum cross with the 
ground state. Its explicit location has been obtained by estimating the mini- 
mum of the dispersion relation (4.6) with P = ~/3 and solving the second- 
order approximation AE1. o(~/3, ~, ~) = 0 for 2. At ~ = 0 the agreement with 
the exact value 2 = 1 is excellent. For small nonzero angles the true value 
is smaller than 1 but our approximation gives values that are slightly larger 
than 1. Also at ~ = 7t/2 we observe a small deviation from the exact 
valuet~4~2=0.901292...: Our estimate yields 2=0.866. . . ( the agreement 
with r~ is a coincidence). 

The level crossing transition 2o divides the massive high-temperature 
phase of the 7/3-chiral Potts model into two parts, which we label I and II. 
In part I the derivation of the quasiparticle picture as presented in Section 
5 and Appendix A is rigorous. Thus, in regime I the spectrum is a quasipar- 
ticle spectrum with two fundamental particles existing for all momenta. In 
ref. 34 we presented numerical evidence that regime II probably also 
exhibits a quasiparticle spectrum with two fundamental particles where the 
Q = 2 particle has the unusual property that it exists only in a limited range 
of the momentum P. At ~o=~=7r/2 this statement has been proven 
rigorously in ref. 35. We expect that the idea to approximate multi particle 
states by putting single-particle states of "small" chains with a sufficient 
separation on a longer chain and to use the finite correlation length in 
order to ensure vanishing of boundary terms (which we can no longer 
show directly as in Appendix A) will apply also in regime II for general 
angles ~, rp. However, in contrast to Section 5, we lose control over the 
fundamental Q = 2  excitation because the perturbation series no longer 
converges and there is no guarantee for the completeness of this construc- 
tion. At least it is plausible to still expect a quasiparticle spectrum in regime 
II with two fundamental particles of which the Q = 2 particle may have a 
Brillouin zone that is smaller than the interval [ 0, 2~ ]. 

9. C O N C L U S I O N  A N D  O U T L O O K  

In this paper we have presented an argument using perturbation 
theory proving that the massive high-temperature phases of all Z,,-spin 
quantum chains exhibit quasiparticle spectra with n -  1 fundamental par- 
ticles. Since the argument relies on perturbation theory it applies rigorously 
only to very high temperatures. Due to the perturbative nature of the 
details, we were not able to give it any predictive power for the cases where 
some of the fundamental particles cross with scattering states. For these 
cases one needs different methods, e.g., Bethe ansatz techniques ~35"36~ or 
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numerical methods, t34) Nevertheless, the basic idea of approximating a 
multi particle state by single-particle states sitting on subparts of the chain 
might be applicable in the entire massive high-temperature phase. One 
could even speculate that a similar argument can be applied to 7/,-spin 
models in higher dimensions as well. 

A refined (but less rigorous) version of this argument can be used to 
control the finite-size effects of k-particle states showing in particular that 
the energy of the excitations does not pick up any corrections at order 1/N. 

Furthermore, our derivation of the quasiparticle picture involving 
n - 1 fundamental particles applies to the scaling region near the conformal 
point 2 = 1, ~b = q~ = 0, the only nonrigorous part of the proof being the 
radius of convergence. This region (2 < 1, ~b, ~o small) corresponds to per- 
turbations of conformal field theories with the thermal operator ~27-3~ and 
a small additional perturbation of the type presented in ref. 26 that breaks 
parity. 

Using duality, t371 our results about the quasiparticle spectra can be 
pulled over to the massive low-temperature phase of 7/,,-spin quantum 
chains. 

Having derived such a quasiparticle picture, the main open problem is 
to find the corresponding massive field theory and to obtain the associated 
scattering matrix. 

We also studied the correlation functions using a perturbation expan- 
sion for the ground state of the 7/3-model. Although this approach is 
limited to short ranges, not only were we able to estimate correlation 
lengths in the massive high-temperature phase, but it also turned out that 
the correlation functions have oscillatory contributions. For very high tem- 
peratures the oscillation length is proportional to the inverse of one of the 
chiral angles L,-~ ~b-~. We further observed that the oscillation length is 
closely related to the minimum of the dispersion relations for general 
values of the parameters. The relation LPmin = 2n is valid on the lattice 
with a much better accuracy than the well-known relation ~ ~ m-~. For 
special values of the parameters we were able to derive the relation 
LPmin=2~ from a form factor decomposition but one should certainly 
understand it better in the general case. 

A P P E N D I X  .~. P R O O F  OF Q U A S I P A R T I C L E  P I C T U R E  

In this appendix we present a modified version of the proof in Section 
5 that the spectrum of the Hamiltonian (2.2) can be explained in terms of 
n -  1 fundamental quasiparticles. The main steps of the proof will be as 
presented in Section 5. However, instead of considering general multipar- 
ticle states, we will go directly back to the single-particle excitations. The 
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corresponding perturbative eigenstates are given by (4.2). One also has to 
be careful to consider where it is permitted to deal directly with zlH~ ~ or 
where one should rather consider H~ ~ first. 

In this appendix we will concentrate on the vanishing of boundary 
terms. Not all arguments presented in Section 5 will be spelled out in detail 
again. In particular, the limiting procedures are taken for granted. This 
explicit presentation has been shifted to this appendix because the explicit 
formulas are a bit nasty, although the ideas are quite simple. 

In order to be able to discuss r-particle states we first write down the 
generalization of (5.2) to any partition of N in r arbitrary integers Nj>  1 
(N  = Z~=, Nj): 

r 

/4(") - -  M(") | ~ + "'" + "~ t") | H N, Z (') " ' N  -- ' 'NI (~HNj |  + ... + ~ ~O(Huj) 
j=t (A.1) 

TN= (1 + C~ TN,))...(1 + (f( TN,))TN, | ... | TNr 

Let vj :-- ~iJ-= l t Ni (vo := 0). Then the boundary operators ~O(H~j~) and 
~O(TNj) are given by 

; I - -  I 

r  ~, k s r , , - k  r , , - k  OLkI ' v j+N j ( - -v j+  I - - - - v j + N j +  l J 
k = l  

(1 + ~0(TN)) li~ i2 ...ivj+Nfi,,j+N,+ ] ...i,,j., +^5+, i,.j+, +N)+l + t - " i N >  

=[iliz...ivj+~+Nj+~ivj+Nj+l...i,.j+Nli,7+,+A%,+l...iu> (A.2) 

It will be useful to verify first that additivity of energy and momentum 
holds for 2 = 0. To this end we show that a composite particle state 

IIN; Q,o,>> e,o, := Ilse'>>P, | .-. | Ilse*>> e, (h.3) 

has approximately energy E := )Z~:= i EQj, momentum Ptot := 5Z~= i P/, and 
total charge Q,o, := ~ =  ~ Qj mod n. Recall that we have defined all IlsQJ~> ej 
in the complete Hilbert space ~ ,  but it is useful to think of them as 
elements of a'gNs, i.e, I [ s e ~ ) ) 6 ~  ~. Applying (A.1) to these states, one 
obtains for the energy 

( H ~ , ~ - g )  IIN; Q,o,>> P,o, 

-- ~ (?(H~])[IN; Qto,>> e,o, 
j = l  

+ ~ Ilse' >>,,, | --. | EQ~,IIsQJ>>,,j| ... | I[se'>>,,, = 0 
j=l 

(A.4) 



Perturbative Approach to Chiral Potts Model 731 

where we have used that 60(H~}) vanishes at 2 = 0 [compare (A.2)]. Thus, 
we verified that additivity of energy is exact at 2 = 0. 

Using (A.1) and (A.2), one obtains for the momentum 

T,, [IN; Q,o,>> p,o, = f i  {~ +r lisQ'>>p,)| ... | (TN r IIs~ 
j=l 

= f i  {t + r } e 'e'~ I[N; Qtot>>e,o, 
j=l 

=fie,~ IIN; Q,ot>>e,o,+e ie'~ IIsQ'>>e, (~ ... (~ [IsO'>>e, 

- e  ~e'~ IIsQ'>> p, | ... | IIsQ'>>p, (A.5) 

where ~) denotes the modifications that occur when shifting in the entire 
tensor product instead of acting on its individual parts. Locally, these 
modifications look as follows: 

IlsQ@ pj ~ IIsQJ+'>> pj+, - IIsQO> pj | IIsQJ+'>> ~j+, 

e-iPj+l N~ -ikej 
= l ~ j j  I0.'" ~ "''0QJ § ~) 10'''0> 

position k - -  I 

e-~ej 
10...0Q/> | IlsaY+' >> e,+,---, 0 (A.6) 

In (A.6) we have used the explicit form (2.9) of the single-particle 
states IIsQ,))1,,.. The vanishing of the boundary terms for N/--* ~ is ensured 
by the normalization factors Nf  -~/2 Thus, we have also shown that 
IIN; Q~ot))p,,,, approximates an eigenstate of the translation operator to 
total momentum Ptot for 2 = 0. 

For 2 > 0  we have to consider single-particle eigenstates IIN/; Q/))pj 
that are derived by perturbation series from the states IlsQ@ ?. These states 
have the form 

IINj; aJ>> e, 

= LIs%>e,+ Y= ,~" 
v>0 

E K~ii')'+ ... +i~' Hi(fi""" i~})) ej 
itJl __ i~l j )  q- " ' "  + Nj  - - ~ j r n o d n  

{'~/' +' ol <~2~+, ( A . 7 )  

It is important to note that the explicit form of the Hamiltonian (2.2) 
implies that at most 2v + 1 spins ik are different from zero in the v th order 
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of the perturbation expansion. In passing we mention that we do not need 
the explicit form of the 

and therefore the argument also applies to the more general Hamiltonian 
(2.1) without modification. 

We should stress that the states (A.7) are in general not convergent for 
N / ~  o~ although the corresponding eigenvalues of AH~'~ and TNj converge 
[compare, e.g., (6.13)]. However, after renormalizing IIW/; Q/55pj to norm 
I, we could again think of it as lying in J f  for all N/because the v th order 
is independent of N/ for  v < N/. 

An/'-particle state now is approximated by 

IIN; Q,o,))p,o, : = l l N ~ ; Q ~ ) ) e , | 1 7 4  (A.8) 

Note that (A.8) cannot be directly related to (A.3) by a perturbation 
expansion. 

First, we consider the translation operator. Thus, we have to 
generalize (A.5) to the states (A.7), (A.8): 

TN tIN; Qtot))e,o, 

= f i  {~ "k-C~ IIN,; Qt>>e,)| ... | (TN, liNt; Qr>> e,) 
j = l  

= f i  {] + C~ e 'p'~ IIN; Qtot))e,o, 
j = l  

= e  ip'~ I[N; Qtot))p,o,+ e ip'~ lINt; Ql))e, (~ ... (~ liNt; Q~))e, 

- d  e'~ IIN,; Q~))e, | ... | IINr; Qr)) P, (A.9) 

The modifications introduced by (~ in (A.9) are more complicated than 
(A.6). Locally, they look as follows: 

fiN/; aj)) p, ~ fIN/+,; aj+ ~ )) p,+, - liNg; a/)) p, | fIN/+ ~; aj  + ~ )) ej+, 

1 
--  ~ 2 v+/' 

V/~j ~ ,,.,, >~o 

• 2* 2 
i ~ . /+1 1+  " ' "  + i 'j+I}Nj+I = Q j + l m o d n  i V I +  . . .  +itvY'=Qymodn 

i l j + l l  iljl 

xe-ik/P"h'(:~) .,yj i r ..i~J)i~J> .ilJ~ i~:+l~) 
'1 . . . . .  tNj k j + l  N) "" k j - - I  mj+l 

i~J+l~ . . . ) }  | , i,,,,, ,,,,+,+, 
, ' " ,  Nj+ I 
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1 ,{ 2"* - ~ ; t '  

# {i[. j~ ~o1 .< 2~,+ 1 
i Ijl r 0 mj 

...Yo-i"':J~'" ')...,j, .,J, "',',+'i~J) ...i~J)t.,j> | Qj+,))pj+, 
" ..... ':9 Nj 

--+0 (A.lO) 

The explicit form of (A.10) may be slightly confusing. Note, however, that 
the vanishing of the boundary terms is guaranteed by the same argument 
as in (A.6). It is sufficient to guarantee that the coefficients of 2" in the 
boundary terms become small with respect to the coefficients of the 
eigenstates. The index set of the sums * and ** has precisely this property. 
The sum * has at most 2~t + 1 nonzero terms, whereas the complete 
momentum decomposition has Nj+,  terms. Thus, the complete sum * is 
suppressed by the factor Nf§ "-. Also the sum ** has 2v + 1 terms (or less) 
compared to Nj for the complete Fourier transform such that it is sup- 
pressed by the normalization factor N f  ,/2. This shows that IIN; Qtot))p,o, 
indeed approximates an eigenstate of the translation operator with total 
momentum etot" 

Translating these statements into weak language, we conclude the 
following: The scalar product of (A.10) with an arbitrary momentum 
eigenstate tends to zero if we rescale both states such that they lie on the 
unit sphere. On the other hand, for any N a normalized true eigenstate of 
the translation operator Tjv exists such that the scalar product of this state 
with IIN;Qtot))e,o, tends to its norm for N--, o~. 

Now we have to consider the generalization of (A.4) to 2 > 0: 

(H~'-E) IIN; Qtot))e,o, 

:C, t H , , l  ~ = ~,  Nj, IIN; Qto,>>e,o, 
j = l  

+ ~ ]lNi;Ql>>V,@ Q ,  Nj ... t H I " ~ -  EQ)  
j = l  

• [INj; Qj )>ej |  ... | IIN~; Q~>>?, 

= '~, (9(H~})[IN; Qtot>> e,o, 
j=l  

(A.11) 
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The boundary terms explicitly read as follows: 

C( H~,j )) IIN; Q,o,))e,o, 
n - - I  

=IIN1; QI ) ) . . , |  " "  ~ ~, ~. 2 "+1 
k = l  v>~O 

E K!v)) .J) 
II . . . . .  Nj 

i'lJ) + "'" + i ~ j ' =  Qj  rood ,1 
# { i ~ ! ~ o l  < z , , +  1 

f .N~I e 1 - - i m P j  . ( j )  . . x - -  [ ( t , , , - k m o d n ) g  j> . i</) ti</I + k m o d n ) )  N/~j  -m+l  " m - - 2 ~ m - - I  
L~I~O 

| IINj+ 1', aj+l )>Pj+,--e-"''J Ig,{' """ .,,-2,.,,-+(sl t;(J) 1 + k  mod n))  

IINj+l; Oj+l>>p~+,)l'" | liNt; QD>e, |  -u (A.12) 
) 

The crucial point in (A.12) is that the states ,'(/) ;t j) ", no longer com- t/71 "' '~nl--I/ 
bine to momentum eigenstates. More precisely, at fixed order v of the per- 
turbation expansion one obtains at most 2v + 3 terms of a complete 
momentum eigenstate. Therefore, these states are suppressed for N/ suf- 
ficiently large by the normalization factor N s- 1/2. In other words: If we pro- 
ject (A.12) at fixed order in 2 onto any momentum eigenstate and correct 
by the norm of IIg; Qtot>>P .... the result tends to zero. Note that we may 
not draw direct conclusions for the limit of H~ ) because the single-particle 
energies EQj do not converge. But for A H ~  ) the single-particle energies 
AEej.o converge and from (A.1 I), (A.12) we may conclude that the states 
(A.8) behave precisely like r-particle states in the limit N ~  Go. 

We have shown so far that the quasiparticle excitations describe a sub- 
set of the spectrum of A H ~  > in the weak limit. To complete the proof we 
have to argue that this is already the complete spectrum. This is guaranteed 
by the fact that for any finite M the complete Hilbert space WM can be 
mapped onto a subspace of 3r N (N sufficiently large) that is spanned 
precisely by the states (A.8). One natural choice is the mapping 

I[Q, ...Qg>>e,o, ~ IIN]; QI>>P, | ... | lINg; QM>>eM ~:r (A.13) 

This completes the proof. 

Let us conclude with a summary of what we have assumed and what 
we were able to prove. Of course, the explicit form of the Hamiltonian (2.2) 
played an important role. We needed three facts: 
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1. For some values of the parameters (2 = 0) the quasiparticle spec- 
trum is trivially guaranteed. 

2. In the vicinity of this point (2 > 0) only nearest neighbours inter- 
act. 

3. The Hamiltonian (2.2) possesses a Z,-symmetry. 

It might seem that the third property was convenient mainly for nota- 
tional reasons because it straightforwardly encoded property 1. However, 
we also needed the explicit form of the Hamiltonian (2.2) in order to 
ensure the absence of further selection rules (at least at 2=0) .  Thus, 
although we did not rely heavily on property 3, we doubt that our proof 
of the quasiparticle spectrum can easily be generalized to models having 
more complicated selection rules. 

We further required that: 

4. The perturbation expansions for the single-particle states converge. 

Note that we did not assume the Hamiltonian H ~  ~ to be Hermitian 
nor did we require it to be diagonalizable--only the existence of the single- 
particle eigenvalues is needed. 

Already in section 4 we inferred from property 4 (and 2) that the limits 
N ~  ~ on of the single-particle eigenvalues of A H ~  ~ exist. The proof 
presented in this appendix shows that under these assumptions: 

(a) The weak limits of the operators TN and AH~ ~ exist. 

(b) The weak limits can be "diagonalized", i.e., the projection-valued 
measure of (2.16) does indeed exist. 

(c) In this limit their spectrum can be expressed in terms of 
quasiparticle excitations. In particular, the spectrum of the weak 
limit of AH~ ) is explicitly known if the dispersion relations of the 
single-particle excitations can be calculated. 

APPENDIX B. SYMMETRIES OF THE HAMILTONIAN AND THE 
OSCILLATION LENGTH 

In this appendix we first discuss the behavior of the Hamiltonian (2.2) 
under parity for special values of the parameters. One finds symmetries that 
were observed numerically in ref. 46 for the integrable submanifold and can 
be derived, e.g., along the lines of Appendix B of ref. 14. The resulting 
identities will subsequently be used in order to derive the values of the 
oscillation length given in (6.7) from the form factor expansion (6.5). 

82~8~3~-9 
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B1. Symmetr ies of the Hamil tonian 

Denote the projection of the Hamiltonian H ~  ) in Eq. (2.2) onto the 
spaces ~ / e  in Eq. (2.15) by H~)(P, Q). Furthermore, introduce a parity 
operator ~3 by the following action on the states (2.5): 

r(~3) li~ ...i.i...i~v) = li~iNi,v_~ ...ij...i2) (B.1) 

Note that ~o" t +x~  = o't -x ,  ~ F I  +.~-~ = Fi -x .  Then one has the following 
identities (see also ref. 46): 

O~k=O~,,_k ~ H ~ ( P ,  Q)~=H~)(--P,  Q) 

o7.~' =07.,_, and ocj, ~ R => ~3H~)(P, Q)~3 = (H~)( -P ,  Q))+ 

oZff = oZ. -t, and oL* = e - 2 n i z k c x k  ==~ ~H~)( Pm. Q + P, Q) ~3 

=(H~)(Pm.Q-P, Q))+ (B.2) 

where the symmetry of the last line holds for those Pm-Q satisfying 
Pro, Q Q-1 +/t_7 = 0 mod n as well as e p-e~ Q being an nth root of unity. Note 
that with the parametrization (2.10) the cases covered by (B.2) 
are precisely those covered by (6.7) with z=2/n In this case, 
Pm.Q=n(1--2Q/n) is a solution to Pm, QQ-l+2rt/n=O lying in the 
interval [ - n , n ] - - t h e  other solution is shifted by n. The solution 
Pm, Q = 7t( 1 -2Q/n) corresponds to the minimum in the dispersion relation 
of the single-particle state in this charge sector. 132" 46~ 

The first two lines of (B.2) follow immediately by looking at ~ H ~ ) ~ ,  
keeping in mind that the translation operator defined in (2.8) satisfies 
~ T N ~  = T ~  ~ = T ~ .  The derivation of the third line of (B.2) is more com- 
plicated. For Q invertible in Z, it can be shown by choosing a suitable 
basis (see Appendix B of ref. 44). For z=2/n and N---0 rood n one can 
follow the lines of Eqs. (B.12)-(B.16) in Appendix B of ref. 14 to elegantly 
prove the third line of (B.2). 

In the case z = 2In and N = 0  mod n we introduce an operator U 
following ref. 14 by 

U : = ~  a ~  z'- (B.3) 
1 

Now, observing that 

U O l  + x U -  1 = o-1 _~.., UFl+xU-l=o92XFl_:,. (B.4) 



Perturbative Approach to Chiral Potts Model 737 

one concludes that UH~)U-t=(H~)) + for Ot*=CO-~Otk . Finally one 
verifies that 

TNUIIil...iN))e=~3TN 1 tr,. -2"" Ilil...i,v)) t, 
x, .x '= I i 

= U(~ -2e-~p IIi] ...iN>>e (B.5) 

where O is the charge operator given by Eq. (2.7). Equation (B.5) implies 
that the operator U maps a state of charge Q and momentum P to a state 
of charge Q and momentum -4nQ/n-  P. After putting things together one 
obtains the desired result. 

B2. Osci l lat ion Length f rom Symmetr ies  of the Hami l ton ian  

Assume that the Hamiltonian H(P, Q) projected onto momentum and 
charge eigenspaces with eigenvalues P and Q has one of the following 
symmetries: 

~H(Pm, Q + P, Q)~= H(Pm.o- P, Q) (B.6a) 

o r  

~3H(Pm.Q+ P, Q)~3=(H(Pm, Q-P,  Q))+ (B.6b) 

with some Pm, Q depending on the charge sector Q. Assume furthermore 
that Pt,> = 0  and that S~ Iv> has charge Q. Then the oscillation length L 
of the correlation function Cz(x) satisfies 

Lem, O = 2~ (B.7) 

Note that this is true for more general Hamiltonians H(P, Q), but it' covers 
in particular the case (B.2) for the Z,-chiral Potts model. 

For a proof of (B.7) we start from the form factor expansion (6.5), 
which in the present case becomes 

C_-(x) =~2"dPeW" ]<P, Q; r 12, Iv>l-' 
-- r 0 ~ V i V >  

(B.8) 

where we have only written the quantum numbers P and Q explicitly and 
incorporated the other ones in the label r. First we observe that ~ 3 ,  ~ = S~. 
If the Hamiltonian satisfies ~3H(Pm.Q+P, Q)~3=H(Pm.Q--P, Q), then 
eigenstates of momentum Pro. Q + P are mapped under parity to eigenstates 
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of momentum em.o--P. This means that ( (Pm.Q+P),  Q;r 1~ Iv) = 
((Pro. Q--P), Q;rl3~ Iv). If the symmetry involves the adjoint of the 
Hamiltonian one finds ((Pm.Q+P), Q;r]31 Iv) = ((Pro, Q--P), Q;rl~l Iv)*. 
Thus, the following identity is valid in both cases: 

[((Pm.Q+P),Q;rl~lv)12=l((em.Q-e),Q;rl31lv)[ z (B.9) 

Now we return to the form factor expansion (B.8): 

i:oo+- Cy.(x)=~t,l,m' s dPe ipx 
(vlv) 

+ f;m~:. - ,  dP eiP" l( e' Q; r l~' vlv) 

= ~ f f  de { ei'P''~ l( (Pm'Q + P)' Q; r vlv) 

+eitPm.o_?~.,. I((e.,. Q-  P), Q;r I~l Iv>l=~ 
(vlv) ] 

=e.,.,.~.,.Zf:dp2cos(Px) [((Pm, Q+P) ,  Q; r IX~ Iv>l 2 (vlv) (B.IO) 

where the last equality follows from (B.9). This shows that C~(x) is of the 
form 

C_=(x) = e2'a"/Lf( x) (B.11) 

with L satisfying (B.7) andf(x)  is given by the remaining integral in (B.10), 
which is clearly real. 

Note that if the Hamiltonian has several different Pro, Q such that (B.6) 
holds [which applies to (B.2)] one obtains different expressions for C~(x) 
involx, ing different L andf(x).  The suitable one among them can be singled 
out by demanding, e.g., f ( x ) >  0 for all x. Our explicit computations 
indicate that this requirement (which means that the oscillations are 
exclusively encoded in the phase factor) indeed leads to the oscillation 
lengths presented in (6.7). 
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